首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶方阵,A’为其伴随矩阵,且 讨论线性方程组Ax=0的基础解系由多少个线性无关解向量构成?并给出该方程组的通解.
设A为3阶方阵,A’为其伴随矩阵,且 讨论线性方程组Ax=0的基础解系由多少个线性无关解向量构成?并给出该方程组的通解.
admin
2021-07-27
70
问题
设A为3阶方阵,A’为其伴随矩阵,且
讨论线性方程组Ax=0的基础解系由多少个线性无关解向量构成?并给出该方程组的通解.
选项
答案
r(A)=2.线性方程组Ax=0的基础解系由3-2=1个线性无关的解向量构成.又由AA
*
=|A|E=0知,A
*
的列向量组均为方程组Ax=0的解向量,因此,取非零列向量ξ=[1,-1,3]
T
,即可构成Ax=0的一个基础解系,通解为cξ=c[1,-1,3]
T
,其中c为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/fhy4777K
0
考研数学二
相关试题推荐
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,那么矩阵(A*)*的最大特征值是________.
n维向量组(Ⅰ)α1,α2,…,αs和(Ⅱ)β1,β2,…,βt等价的充分必要条件是
设A是三阶矩阵,其特征值是1,3,一2,相应的特征向量依次是α1,α2,α3,若P=(α1,2α3,一α2),则P一1AP=()
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y22+y22
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设证明二次型f对应的矩阵为2ααT+ββT;
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ)。
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
设有直线则L1与L2的夹角为()
设f(x)是二阶常系数非齐次线性微分方程y’’+Py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)-0的特解,则当x→0时,()
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
随机试题
骨折临床愈合后,骨痂的改造塑型主要取决于()
(2009年第168题)下列选项中,属于遗传疾病的有
下列哪种偏倚在队列研究中见不到
图示结构可简化为桁架体系的是()。
如果投资新建一座商场,根据基本建设程序,首先应做的是以下哪项工作?
城市污水处理厂的熟污泥是指()。
甲、乙都是某建筑工地分包商技术负责人。乙的现场办公用房因使用电炉着火,甲为防止乙的房火蔓延而去扑救,结果被烧伤,花去医疗费1000元,则甲、乙之间构成()。
下列关于施工现场临时室外消防给水系统设置的规定不符合要求的是()。
按企业管理人员的工资计提的福利费,应()。
中华人民共和国成立后,从1978年至今的历史发展阶段属于()。
最新回复
(
0
)