首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β都是四维列向量,A﹦(α1,α2,α3,α4),非齐次线性方程组Ax﹦β有通解kξ﹢η﹦Jk(2,1,0,-1)T﹢(3,-1,2,1)T,其中k为任意常数,则下列关系式中不正确的是( )
设α1,α2,α3,α4,β都是四维列向量,A﹦(α1,α2,α3,α4),非齐次线性方程组Ax﹦β有通解kξ﹢η﹦Jk(2,1,0,-1)T﹢(3,-1,2,1)T,其中k为任意常数,则下列关系式中不正确的是( )
admin
2019-01-22
58
问题
设α
1
,α
2
,α
3
,α
4
,β都是四维列向量,A﹦(α
1
,α
2
,α
3
,α
4
),非齐次线性方程组Ax﹦β有通解kξ﹢η﹦Jk(2,1,0,-1)
T
﹢(3,-1,2,1)
T
,其中k为任意常数,则下列关系式中不正确的是( )
选项
A、β-3α
1
﹢α
2
-2α
3
-α
4
﹦0
B、β﹢
﹦0
C、α
1
-α
2
﹢2α
4
-β﹦0
D、β-5α
1
-2α
3
﹦0
答案
C
解析
根据线性方程组有通解kξ﹢η可知
β﹦(α
1
,α
2
,α
3
,α
4
)(kξ﹢η)﹦(α
1
,α
2
,α
3
,α
4
)
﹦(2k﹢3)α
1
﹢(k-1)α
2
﹢2α
3
﹢(-k﹢1)α
4
,
即β-(2k﹢3)α
1
-(k-1)α
2
-2α
3
-(-k﹢1)α
4
﹦0,其中k是任意常数,可见α
1
,α
2
,α
3
,α
4
,β线性相关,上述线性组合为0的式子中不能没有α
3
,C选项没有α
3
,故C选项不正确。
当k﹦0时A选项成立;k﹦
时B选项成立;k﹦1时D选项成立。故本题选C。
本题考查齐次线性方程组解的性质及通解的结构。利用解的性质写出解向量之间的关系式,结合线性相关的性质得出不论k取何值,等式中都不能缺少α
3
。
转载请注明原文地址:https://www.kaotiyun.com/show/eyM4777K
0
考研数学一
相关试题推荐
3阶矩阵已知r(AB)小于r(A)和r(B),求a,b和r(AB).
设随机变量X的分布函数为求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}以及概率密度f(x).
下列函数中是某一随机变量的分布函数的是
已知(X,Y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布.(I)求(X,Y)的联合密度函数f(x,y);(Ⅱ)计算概率P{X>0,Y>0}
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令求随机变量(X1,X2)的联合概率分布.
设二维随机变量(X,Y)的分布律为(I)求常数a;(Ⅱ)求两个边缘分布律;(Ⅲ)说明X与Y是否独立;(Ⅳ)求3X+4Y的分布律;(V)求P{X+Y>1}.
已知n阶矩阵A满足(A一aE)(A一bE)=0,其中a≠b,证明A可对角化.
计算下列三重积分或将三重积分化成累次积分I=(x+y+z)dV,其中Ω:x2+y2+z2≤2az,≤z(a>0).
求下列平面上曲线积分,其中是沿椭圆正向从A(a,0)到(0,b)的一段弧,a≠1.
随机试题
工程项目计划的作用有()。
下面是九年级下册第一单元第二课的课文,阅读相关材料,完成下列题。我用残损的手掌戴望舒我用残损的手掌摸索这广大的土地:这一角已变成灰烬,那一角只是血和泥;这一片湖该是我的家乡,
我们没有到过北极,却可以在头脑中想象出它的样子,这说明想象可以脱离现实。()
关于命名××省省级优质发展企业的决定[2013]×发14号为了加强企业合同管理,规范经营行为,维护市场秩序,在2012年省政府首批命名省级优质发展企业的基础上(×政发[2012]23号),今年经各省辖市人民政府推荐和省有关部门考核验收,同时对首批命名的
“社会人”假设是组织行为学家提出的一种与管理有关的人性假设。“社会人”假设认为,人们在工作中得到的物质利益对于调动其生产积极性是次要的,人们最重视在工作中与周围的人友好相处,良好的人际关系对于调动人的工作积极性起决定作用。根据上述定义,下列哪项是基于“社会
A、 B、 C、 D、 A
(Ⅰ)已知与=0分别有解y=与y=,则方程满足y(0)=1的特解是y=_______;(Ⅱ)已知有特解则该方程的通解是y=_______.
设某单总线LAN,总线长度为1000 m,数据率为10 Mb/s,数字信号在总线上的传输速度为2c/3(c为光速),则每个信号占据的介质长度为(1)m。当使用CSMA/CD(非IEEE 802.3标准)访问方式时,如只考虑数据帧而忽略其他一切因素,则最小时
Spittinginpublichasbecomesociallyreprehensible-andevencriminal--inmanypartsofChinaaspublichealthauthorities
WhowontheWorldCupfootballgame?WhathappenedattheUnitedNations?Howdidthecriticslikethenewplay?【C1】______aneve
最新回复
(
0
)