首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
admin
2019-05-14
111
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(
)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即(k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
)b=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0, 故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n一r+1个线性无关的解向量构成的向量组,设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
一β
1
,γ
2
=β
3
一β
1
,…,γ
n-r+1
=β
n-r+2
-β
1
根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n一r+1个线性无关的解,矛盾,所以AX=b的任意n一r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量盼个数最多为n一r+1个.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ei04777K
0
考研数学一
相关试题推荐
设X1,…,Xn是取自总体X的一个简单随机样本,X的概率密度为(Ⅰ)求未知参数θ的矩估计量;(Ⅱ)求未知参数θ的最大似然估计量.
在上半平面上求一条凹曲线,其上任一点M(χ,y)处的曲率等于此曲线在该点的法线段MQ长度的倒数,Q是法线与χ轴的交点,且曲线在点(1,1)处的切线与χ轴平行.
设随机变量U服从标准正态分布N(0,1),随机变量求:(Ⅰ)X与Y的联合分布;(Ⅱ)X与Y的相关系数ρXY.
甲、乙二人各自独立地对同一试验重复两次,每次试验的成功率甲为0.7,乙为0.6,试求二人试验成功次数相同的概率.
已知ABC=D,其中且矩阵B的第3行元素是1,2,3,则矩阵B=_______.
设L是平面上从圆周x2+y2=a2上一点到圆周x2+y2=b2上一点的一条光滑曲线(a>0,b>0),r=,则I=∫Lr3(xdx+ydy)=_______.
与直线L1:及直线L2:都平行且经过坐标原点的平面方程是_______.
(1996年)设则a=________.
已知矩阵A=的特征值之和为3,特征值之积为一24,则b=__________.
已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ξ2=4,求a,b的值和正交矩阵P.
随机试题
UnlikeBritain,theUSdoesnothaveanationalhealthcareservice.Mostpeoplebuymedicalinsurancetohelppayformedicalc
社区健康教育的对象不包括
兄弟姐妹间进行器官移植引起排斥反应的物质是
工程量清单作为招标文件的组成部分,一个最基本的功能是作为信息的载体,为潜在的投标者提供必要的信息。对于分部分项工程量清单,说法不正确的是()。
一台实验性的微波衣服干燥机既不烘烤空气也不烘烤布料。相反,它烘烤的是衣服里的水,所以可以在较低温度下运作从而能节省电力和保护易损纤维。微波通常是用来加热金属物品,但微波干燥机的研究人员正在完善一项程序,可以阻止大头针等细金属被加热并燃烧衣服。下哪项
《中华人民共和国卫生法》的实施不包括()。
人类是一种文化动物。人类的行为不仅被先天的生物本能所决定.而且也受到后天的文化和社会等诸多因素的影响。爱美之心,人皆有之。然而,任何美妙的东西背后,都有并不美好的本质或起源,不管你是否能意识到。美丽往往是谎言,而实话往往很难听。浏览网页,你可能被华丽的页面
SomehistorianssaythatthemostimportantcontributionofDwightEisenhower’spresidency(总统任期)inthe1950swastheU.S.int
在信息系统开发方法中,不属于结构化方法指导思想的是()。
Iscomputercodingaforeignlanguage?A)Ascomputercodinghasbecomeanincreasinglysought-afterskill,moreK-12school
最新回复
(
0
)