首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在上半平面上求一条凹曲线,其上任一点M(χ,y)处的曲率等于此曲线在该点的法线段MQ长度的倒数,Q是法线与χ轴的交点,且曲线在点(1,1)处的切线与χ轴平行.
在上半平面上求一条凹曲线,其上任一点M(χ,y)处的曲率等于此曲线在该点的法线段MQ长度的倒数,Q是法线与χ轴的交点,且曲线在点(1,1)处的切线与χ轴平行.
admin
2018-06-12
44
问题
在上半平面上求一条凹曲线,其上任一点M(χ,y)处的曲率等于此曲线在该点的法线段MQ长度的倒数,Q是法线与χ轴的交点,且曲线在点(1,1)处的切线与χ轴平行.
选项
答案
设所求曲线为y=y(χ),则它在点M(χ,y)处的法线为 Y-y(χ)=-[*](X-χ). (y′≠0) 令Y=0,得与χ轴的交点Q(χ+yy′,0), [*](y′=0时也满足). 按题意得微分方程 [*] 即yy〞=1+y
′2
按题意,初始条件是:y(1)=1,y′(1)=0. 下解初值问题[*] 这是不显含χ的可降阶方程,解法是:作变换y′=[*]=p,并以y为自变量,得 [*] 代入方程得y[*]=1+p
2
. 这是可分离变量的方程,分离变量得 [*] 由y=1时y′=p=0 [*]C
1
=1[*] 注意,由方程知,y>0时y〞>0,再由y′(1)=0,则χ>1时y′>0;χ<1时y′<0 于是[*] 两边积分并注意χ=1时y=1解得 ln(y+[*])=±(χ-1),即y+[*]. 由此又得y-[*]. 因此所求解y=[*][e
χ-1
+e
-(χ-1)
]即为所求曲线方程.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/RFg4777K
0
考研数学一
相关试题推荐
已知P=是矩阵A=的一个特征向量.(1)求参数a,b及特征向量p所对应的特征值;(2)问A能不能相似对角化?并说明理由.
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cχ=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cχ=0的基础解系.
f(χ1,χ2,χ3)=5χ12+5χ22+cχ32-2χ1χ2+6χ1χ3-6χ2χ3的秩为2.(1)求参数c及此二次型对应矩阵的特征值;(2)指出方程f(χ1,χ2,χ3)=1表示何种二次曲面.
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
设A(2,2),B(1,1),г是从点A到点B的线段下方的一条光滑定向曲线y=y(χ),且它与围成的面积为2,又φ(y)有连续导数,求曲线积分I=∫г[πφ(y)cosπχ-2πy]dχ+[φ′(y)sinπχ-2π]dy.
(Ⅰ)求级数的收敛域;(Ⅱ)求证:和函数S(χ)=定义于[0,+∞)且有界.
甲、乙、丙三人向一架飞机进行射击,他们的命中率分别为0.4,0.5,0.7.设飞机中一弹而被击落的概率为0.2,中两弹而被击落的概率为0.6,中三弹必然被击落,今三人各射击一次,求飞机被击落的概率.
设两个相互独立的事件A与B至少有一个发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=_________
设f(x)=其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1,求f’(x),并讨论f’(x)在(-∞,+∞)内的连续性.
一链条悬挂在一钉子上,启动时一端离开钉子8m,另一端离开钉子12m,试分别在以下两种情况下求链条滑离钉子所需要的时间:不计钉子对链条的摩擦力;
随机试题
大肠菌群测定的一般步骤是()。
工伤
A、1/3B、3/4C、4/3D、3B
CT成像过程中将光信号转换为电信号的部件是
李某涉嫌恐怖活动犯罪,于2月3日被公安机关依法逮捕,2月6日,赵某的律师提出欲与其会面,则下列说法正确的是:()
当月允许抵扣的进项税额为( )。当月应纳营业税额为( )。
19世纪德国经济学家瓦格纳提出的税收原则包括()。
设f(x,y)=(x-6)(y+8),求函数f(x,y)在点(x,y)处的最大的方向导数g(x,y),并求g(z,y)在区域D={(x,y)|x2+y2≤25)上的最大值与最小值
执行下列程序后,屏幕上显示的结果是X=2Y=3?X,YDOSUB1??X,YPROCEDURESUB1PRIVATEY
Whatismeant【51】theword"friend"?Thedictionary【52】itas:"oneattachedto【53】byaffectionoresteem".Americansusetheword
最新回复
(
0
)