首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知P=是矩阵A=的一个特征向量. (1)求参数a,b及特征向量p所对应的特征值; (2)问A能不能相似对角化?并说明理由.
已知P=是矩阵A=的一个特征向量. (1)求参数a,b及特征向量p所对应的特征值; (2)问A能不能相似对角化?并说明理由.
admin
2016-05-09
54
问题
已知P=
是矩阵A=
的一个特征向量.
(1)求参数a,b及特征向量p所对应的特征值;
(2)问A能不能相似对角化?并说明理由.
选项
答案
(1)设λ是特征向量p所对应的特征值,根据特征值的定义,有 (A-λE)P=0, [*] 解得a=-3,b=0,且P所对应的特征值λ=-1. (2)A的特征多项式为 |A-λE|=[*]=(λ+1)
3
, 得A的特征值为λ=-1(三重). 故若A能相似对角化,则特征值λ=-1有3个线性无关的特征向量,而 [*] 即r(A+E)=2,所以齐次线性方程组(A+E)χ=0的基础解系只有一个解向量,因此A不能相似对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/trw4777K
0
考研数学一
相关试题推荐
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=().
设A=*,且α=为矩阵A的特征向量.(Ⅰ)求a,b的值及a对应的特征值λ.(Ⅱ)求正交矩阵Q,使得QTAQ为对角阵.
设A=(β-α1-2α2-3α3,α1,α2,α3),α1,α2,α3,β均是3维列向量,则方程组Ax=β有特解为________。
n维向量组(Ⅰ):α1,α2,…,αs和(Ⅱ):β1,β2,…,βt等价的充分必要条件是
已知二次型f(x1,x2,x3)=xTAx,A是3阶实对称矩阵,满足A2-2A-3E=O,且|A|=3,则该二次型的规范形为()
设a,Aa,A2a线性无关,且3Aa-2A2a-A3a=0,其中A为3阶矩阵,a为3维列向量求A的特征值与特征向量;
随机试题
开坡口
Oneoftherequirementsforafireisthatthematerial()toitsburningtemperature.
可抑制小肠运动的激素是
胰高血糖素升高血糖的作用机制是
诊断吁毒最有意义的临床表现是
A公司于2×15年12月31日“预计负债一产品质量保证”科目贷方余额为100万元,2×16年实际发生产品质量保证费用90万元,2×16年12月31日预提产品质量保证费用110万元。税法规定,产品质量保证支出在实际发生时允许税前扣除。2×16年12月31日该
债权人转让权利,未通知债务人的,该转让对债务人不发生效力。()
讯问聋、哑犯罪嫌疑人,应当有通晓聋、哑手势的人参加,并将这种情况记入笔录。()
Inordertobequalified,theapplicantshould______.
Backin1975,economistsplottedrisinglifeexpectanciesagainstcountries’wealth,andconcludedthatwealthitselfincreases
最新回复
(
0
)