首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A,B为n阶矩阵,|λE—A|=|λE一B|,且A,B都可相似对角化,证明:A~B. (2)设,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
(1)设A,B为n阶矩阵,|λE—A|=|λE一B|,且A,B都可相似对角化,证明:A~B. (2)设,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
admin
2017-08-31
63
问题
(1)设A,B为n阶矩阵,|λE—A|=|λE一B|,且A,B都可相似对角化,证明:A~B.
(2)设
,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为|λE一A|=|λE-B|,所以A,B有相同的特征值,设为λ
1
,λ
2
,…,λ
N
,因为A,B都可相似对角化,所以存在可逆矩阵P
1
,P
2
,使得 [*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 取P
1
P
2
-1
=P,则P
-1
AP=B,即A~B. (2)由|λE一A|=[*]=(λ一1)
2
(λ一2)=0得A的特征值为λ
1
=2,λ
2
=λ
3
=1; 由|λE一B|=[*]=(λ一1)
2
(λ一2)=0得B的特征值为λ
1
=2,λ
2
=λ
3
=1. [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/eXr4777K
0
考研数学一
相关试题推荐
[*]
(2002年试题,七)(1)验证函数∞)满足微分方程y’’+y’+y=ex;(2)利用(1)的结果求幂级数的和函数.
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
两容器盛盐水20L,浓度为15g/L,现以1L/min的速度向第一只容器注入清水(同时搅拌均匀),从第一只容器以1L/min的速度将溶液注入第二只容器,搅拌均匀后第二只容器以1L/min的速度排出,则经过________分钟第一只容器溶液浓度为原来的一
袋中装有5个白球,3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取2球,用Xi表示第i次取到的白球数,i=1,2.(Ⅰ)求(X1,X2)的联合分布;(Ⅱ)求P{X1=0,X2≠0},P{X1X2=0};(Ⅲ)判断X
总体X~N(μ,52),则总体参数μ的置信度为1-a的置信区间的长度().
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问£为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
A、绝对收敛B、条件收敛C、发散D、敛散性与k有关A
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.证明:在任意一个不含原点在其内的单连通区域D0上,曲线积分与具体的c无关而仅与点A,B有关.
设二维随机变量(X,Y)服从区域-1≤x≤1,0≤y≤2上的均匀分布,求二次曲面x12+2x22+Yx32+2x1x2+2Xx1x3=1为椭球面的概率。
随机试题
大型的动物性原料在加热时,开始就应使用沸水,这有助于内部血水的排出。()
假定邮寄包收费标准如下:若收件地点在100千米以内,普通件每千克1.5元,挂号件每千克2元。若收件地点在100千米以外,普通件每千克2元,挂号件每千克2.5元;若重量大于20千克,超重部分每千克加收0.6元。请绘制确定收费的决策表、决策树(重量用Q表示)
蛔虫病旋毛虫病
属于二氢吡啶类的钙拮抗药是
急性肾功能衰竭少尿期应采取哪些治疗措施
民事法律关系的主体只包括自然人,不包括法人。()
甲企业(增值税一般纳税人)为白酒生产企业,2013年4月发生以下业务:(1)向某烟酒专卖店销售粮食白酒20吨,开具普通发票,取得含税收入2000000元,另收取品牌使用费500000元。(2)提供100000元(不含税)的原材料
强调学习是认知结构的变化的是哪位学者()。
Prettyinpink;adultwomendonotrememberbeingsoobsessedwiththecolour,yetitispervasiveinouryounggirls’lives.It
WhatisthetitleoftheseriesofpresentationsthatDavidPricewillmake?【20】
最新回复
(
0
)