首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max(X,Y)的分布函数为( ).
[2008年] 设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max(X,Y)的分布函数为( ).
admin
2019-04-15
71
问题
[2008年] 设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max(X,Y)的分布函数为( ).
选项
A、F
2
(x)
B、F(x)F(y)
C、1-[1-F(x)]
2
D、[1-F(x)][1-F(y)]
答案
A
解析
解一 因X与Y同分布,故y的分布函数也是F(x).由命题3.2.5.2(2)知,F
max
(x)=F(x)F(y)=F
2
(x).仅(A)入选.
解二 仅(A)入选.设Z的分布函数为F
Z
(x),则
F
Z
(x)=P(Z≤x)=P(max(X,Y)≤x)=P(X≤x,Y≤x).
因X,Y独立同分布,故
F
Z
(x)=P(X≤x)P(Y≤x)=F(x)F(x)=F
2
(x).
解三 仅(A)入选.因Z的分布函数为一元函数,而非二元函数,故不能选(B)、(D).又因选项(C)为min(X,Y)的分布函数.事实上,有
P(min(X,Y)≤x)=1-P(min(X,Y)>x)=1-P(X>x,Y>x)=1-P(X>x)P(Y>x)
=1-[1-P(X≤x)][1-P(Y≤x)]=1-[1-F(x)][1一F(y)]
=1-[1-F(x)]
2
.
注:命题3.2.5.2 (2)当X
1
,X
2
,…,X
n
相互独立且有相同分布函数F(z)时,有 F
max
(z)=[F(z)]
n
, F
min
(z)=1-[1-F(z)]
n
.
转载请注明原文地址:https://www.kaotiyun.com/show/e7P4777K
0
考研数学三
相关试题推荐
向量组α1,α2,…,αS线性无关的充要条件是().
设幂级数的收敛半径分别为R1,R2,且R1<R2,设(an+bn)x1的收敛半径为R0,则有().
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k.(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当k>1时,f(x)≡常数.
求级数的收敛域与和函数.
已知二维随机变量(X,Y)的概率密度为(Ⅰ)试求(X,Y)的边缘概率密度fX(x),fY(y),并问X与Y是否独立;(Ⅱ)令Z=X—Y,求Z的分布函数FZ(y)(z)与概率密度fZ(y)(z)。
设A,B为随机事件,且,令(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求X和Y的相关系数ρXY。
设随机变量X与Y均服从正态分布N(μ,σ2),则P{max(X,Y)>μ}一P{min(X,Y)<μ}=________。
设A=方程组AX=B有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(z),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:(1)曲线y=f(x);(2)曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
若行列式的某个元素aij加1,则行列式的值增加Aij.
随机试题
小张和小王曾就读于外国某名校计算机专业,毕业后两人回国创业,在国内某一线城市成立了一家小型互联网公司。起初,公司一共不到20人,与很多公司一样,小张和小王实行了“领导决策,员工执行”的管理方式。公司近几年发展很快,规模也扩大到100多人,但不久就陷入了发展
公司的终止和丧失法人资格,是因为()。
下列各项中,应列入利润表“税金及附加”项目的有()。
苏州四大园林指()
教育活动的基本矛盾是()。
下列关于“法治”与“法制”区别的表述,正确的是()。
下列关于我国农业税的说法正确的是()。
新上任的检察长衣着( ),其貌不扬,但脸上刚毅的神色给人们留下了深刻的印象。
设α1,α1,…,αm,β1,β2,…,αm,γ线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
下列______是文件服务器的项目。
最新回复
(
0
)