首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得∫0ξ f(x)dx=(1-ξ)f( ξ) .
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得∫0ξ f(x)dx=(1-ξ)f( ξ) .
admin
2017-05-31
72
问题
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得∫
0
ξ
f(x)dx=(1-ξ)f( ξ) .
选项
答案
令φ(x)=(1一x)F(x)=∫
0
x
f(t)dt—x∫
0
x
f(t)dt,则φ(x)在[0,1]上连续,在(0,1)内可导,且φ(0)=φ(1)=0. 由洛尔定理,存在点ξ∈(0,1),使得φ’(ξ)=0,即f(ξ)一∫
0
ξ
f(t)dt—ξf(ξ)=0,故有∫
0
ξ
f(t)dt=(1一ξ)f(ξ) 用反证法证明唯一性. 假若在(0,1)内存在点ξ
1
、ξ
2
,不妨设ξ
1
<ξ
2
,使[*]两式相减得: [*] 由已知条件可知,上式的左边大于零,而右边小于零矛盾,故点ξ是唯一的.
解析
记F(x)=∫
0
x
f(t)dt,欲证存在点ξ,使得F(ξ)=(1—ξ)F’(ξ)
F(x)=(1-x)F’(x).解变量可分离的微分方程得
即(1一x)F(x)=c.
作辅助函数φ(x)=(1一x)F(x),用洛尔定理证明.
转载请注明原文地址:https://www.kaotiyun.com/show/deu4777K
0
考研数学一
相关试题推荐
f(x)在[a,b]上有二阶连续导数,且满足方程f〞(x)+x2fˊ(x)-2f(x)=0,证明:若f(a)=f(b)=0,则f(x)在[a,b]上恒为0.
[*]
设f(x),ψ(x),ψ(x)是(-∞,+∞)内的单调增函数,证明:若ψ(x)≤f(x)≤ψ(x),则ψ(ψ(x))≤f(f(x))≤ψ(ψ(x))
设二维随机变量(X,Y)在区域D:0<x<1,|y|=x内服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差D(Z).
设Z=f(exsiny,x2+y2),其中f具有二阶连续偏导数,求
(2004年试题,一)设L为正向圆周x2+y2=2在第一象限中的部分,则曲线积分一2ydx的值为=____________.
已知三元二次型xTAx的平方项系数均为α,设α=(1,2,一1)T且满足Aα=2α.求正交变换x=Qy化二次型为标准形,并写出所用坐标变换;
用洛必达法则求下列极限:
求f(x,y)=x+xy—x2一y2在闭区域D={(x,y)10≤x≤1,0≤y≤2}上的最大值和最小值.
计算其中S为圆柱面x2+y2=a2介于z=0和z=h之间的部分.
随机试题
腹股沟三角(}lesselbach三角)
在实际教学中,教师可以通过哪些途径来培养学生的问题解决能力?
Morethan30,000driversandfrontseatpassengersarekilledorseriouslyinjuredeachyear.Ataspeedofonly30milesperho
肺心病肺动脉高压的形成,最重要的原因是
大气污染源调查中,面源调查内容包括()。
环境影响报告书中,()有该建设项目所在地单位和居民的意见。
出口与外国的国民收入的关系是()。
某企业为增值税一般纳税人,适用的增值税税率为13%,该企业2020年12月初“应付职工薪酬”科目贷方余额为286万元,12月发生的有关职工薪酬的业务资料如下:(1)以银行存款支付上月的应付职工薪酬,并按规定代扣代缴职工个人所得税6万元和个人负
为了减少误差,测验在编制、施测、评分以及解释等方面都必须遵循一套()。
发明世界上第一辆蒸汽火车的是()工程师。
最新回复
(
0
)