首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为[b11,b11,…,b1,2n]T,[b21,b22,…,b2,2n]T,…,[bn1,bn2,…,bn,2n]T.试写出下列线性方程组的通解,并说明理由. [img][/img]
已知线性方程组 的一个基础解系为[b11,b11,…,b1,2n]T,[b21,b22,…,b2,2n]T,…,[bn1,bn2,…,bn,2n]T.试写出下列线性方程组的通解,并说明理由. [img][/img]
admin
2019-04-08
55
问题
已知线性方程组
的一个基础解系为[b
11
,b
11
,…,b
1,2n
]
T
,[b
21
,b
22
,…,b
2,2n
]
T
,…,[b
n1
,b
n2
,…,b
n,2n
]
T
.试写出下列线性方程组的通解,并说明理由.
[img][/img]
选项
答案
为方便记,对方程组(I)引入如下记号a
i
=[a
i1
,a
i2
,…,a
i,2n
](i=1,2,…,n),则其系数矩阵 [*] A
T
=[a
1
T
,a
2
T
,…,a
n
T
]. 同样,对方程组(Ⅱ)引入记号b
i
=(b
i1
,b
i2
,…,b
i,2n
)(i=1,2,…,n),相应的系数矩阵为 [*] B
T
=[b
1
T
,b
2
T
,…,b
n
T
], 则方程组(I),(Ⅱ)的矩阵形式为AX=0及BY=0. 由题设有b
1
T
,b
2
T
,…,b
n
T
为方程组(I)的一个基础解系,则 A[b
1
T
,b
2
T
,…,b
n
T
]=[0,0,…,0], 即 AB
T
=O, 从而(AB
T
)
T
=BA
T
=O,即B[a
1
T
,a
2
T
,…,a
n
T
]=[0,0,…,0],因而找到了a
1
T
,a
2
T
,…,a
n
T
为方程组(Ⅱ)的解向量.下面证明这组解向量线性无关,且其向量个数为2n一秩(B),则该组向量就是方程组(Ⅱ)的一组基础解系. 事实上,因b
1
T
,b
2
T
,…,b
n
T
为方程组(I)的基础解系,故其线性无关,且其所含向量个数为n=2n一秩(A),即秩(A)=n,于是a
1
,a
2
,…,a
n
也线性无关,即a
1
T
,a
2
T
,…,a
n
T
也线性无关.又 因b
1
T
,b
2
T
,…,b
n
T
线性无关,故b
1
,b
2
,…,b
n
也线性无关,于是秩(B)=n,即方程组(Ⅱ)的解空间的维数为2n一秩(B)=n. 综上所述,a
1
T
,a
2
T
,…,a
n
T
为方程组(Ⅱ)的一个基础解系,因而方程组(Ⅱ)的通解为 y=k
1
a
1
T
+k
2
a
2
T
+…+k
n
a
n
T
, 其中k
i
(i=1,2,…,n)为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/dD04777K
0
考研数学一
相关试题推荐
矩阵相似的充分必要条件为()
设矩阵()
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______。
设矩阵α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为______。
已知齐次线性方程组同解,求a,b,c的值.
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2β2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βs也为Ax=0的一个基础解系.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
随机试题
注意力不集中,心悸易惊,失眠多梦,甚则哭笑无常,语无伦次,属于()(2005年第23题)
既能补血,又能滋阴的药物是
A.内吸磷B.敌百虫C.呋喃丹D.乐果E.马拉硫磷
当归的主治病证是()熟地黄的主治病证是()
猪苓的粉末不同于茯苓的特征包括
物业管理企业资质等级分为一级、二级、三级及四级,《资质管理办法》从企业的资产、人员构成、管理物业的类型与规模、业绩、诚信和内部规章制度等方面分别作了相应的等级规定。
下列选项中,不属于了解客户需求时要注意的问题是()。
某企业只生产一种产品,单价为10元,单位变动成本为6元,固定成本5000元,销量1000件。欲实现目标利润2000元,可以采取的措施不包括()。
如果奏鸣曲式主部主题在e小调上,则再现部副部主题的调性可以是()。
设f(0)=0.则f(x)在点x=0可导的充要条件为
最新回复
(
0
)