首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非奇异矩阵,a为n维列向量,b为常数.记分块矩阵 其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵. 证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A为n阶非奇异矩阵,a为n维列向量,b为常数.记分块矩阵 其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵. 证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
admin
2019-03-21
89
问题
设A为n阶非奇异矩阵,a为n维列向量,b为常数.记分块矩阵
其中A
*
是矩阵A的伴随矩阵,E为n阶单位矩阵.
证明:矩阵Q可逆的充分必要条件是α
T
A
-1
α≠b.
选项
答案
由上题得[*] 故Q可逆[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/d1V4777K
0
考研数学二
相关试题推荐
曲线上对应于t=1的点处的法线方程为________.
就k的不同取值情况,确定方程x一sinx=k在开区间(0,)内根的个数,并证明你的结论.
求函数f(x)=在x=0点处带拉格朗日型余项的n阶泰勒展开式.
已知=9,求常数a.
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组系数矩阵A的秩,r(A)=2:(2)求a,b的值及方程组的通解.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,α3线性表示.
设A,B为满足AB=O的任意两个非零矩阵,则必有
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(Ⅰ)写出f(x)在[一2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导.
设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
随机试题
企业以人为本,形成一流的员工队伍,为市场创造适销对路的产品,提供最佳的服务,以展现员工良好的职业道德、较高的文化素养,崇高的精神风貌所进行的长远性谋划与方略是()
下列对计算机软件认识不正确的是______。
A.急性闭角型青光眼B.弱视C.缺血性视神经病变D.开角型青光眼E.以上均不是逐渐视力下降无眼痛
格林-巴利综合征脑脊液的特点是
移动平均法应用于消极型股票投资战略。( )
公司债券只能是记名债券。()
驾驶员在正常行车途中,发现两个小孩从侧面横过马路,驾驶员刹不住车,急转方向盘,汽车朝路旁的空房撞去,致车和空房损坏严重。驾驶员的行为是()。
政策性投资也叫竞争性投资。()
下列说法中,正确的是
Wheremostlikelyarethespeakers?
最新回复
(
0
)