首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X的概率密度为 其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本,为样本均值。 求参数λ的最大似然估计量。
设总体X的概率密度为 其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本,为样本均值。 求参数λ的最大似然估计量。
admin
2019-01-19
73
问题
设总体X的概率密度为
其中参数λ(λ>0)未知,X
1
,X
2
,…,X
n
是来自总体X的简单随机样本,
为样本均值。
求参数λ的最大似然估计量。
选项
答案
构造似然函数 L(x
1
,…,x
n
;λ)=[*] 取对数 lnL=2nlnλ+[*] 令 [*] 故其最大似然估计量为[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/d1P4777K
0
考研数学三
相关试题推荐
设A是n×m矩阵,B是m×n矩阵,且m>n,若AB=E,其中E是n阶单位矩阵,则必有
设X1,X2,…,Xn,…相互独立同分布,其分布函数记为F(x),密度函数记为f(x),并且F(x)严格单调,f(x)连续,根据中心极限定理,当n充分大时,F(Xi)近似服从__________分布,参数为__________.
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
已知矩阵A=与对角矩阵相似,求An.
设A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT—E且B的行向量是齐次方程组Ax=0的解,P是m阶可逆矩阵,证明:矩阵PB的行向量是Ax=0的基础解系.
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
设三元非齐次方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T.求该非齐次方程组的通解.
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn—r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn—r=ξn—r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ0η
已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为标准形f=3y12—6y22—6y32,其中矩阵Q的第1列是α1=()T.求二次型f(x1,x2,x3)的表达式.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为①求A.②证明A+E是正定矩阵.
随机试题
Evenpeoplewhodon’tunderstandEnglishcanenjoyChaplin’sfilmsbecausetheyarealmostsilent.Itisn’twhathesaysthat
针对组织内部的具体问题,在较小范围内和较短时间内实施的计划属于
预防心房颤动患者发生体循环栓塞,应首选下列哪种药物
A.阴茎B.睾丸C.精索D.阴囊E.尿道
根据《地方组织法》规定,关于地方各级人民政府工作部门的设立,下列选项正确的是:(2009年卷一94题,不定项)
资产按其流动性(即变现速度或能力)不同,分为()。[2009年真题]
在计数器定时查询方式下,若每次计数从[n/2]开始,则()。
(2011年第2题)阅读下面短文,回答问题:“文化自觉与文化自信”,胡锦涛同志“七一”讲话中提冉的这样一个问题,有着重要的意义。自觉自信,首先是对于文化建设的重视,是一种观念,一种不仅看到物质财富的建设积累,而且看到价值观念、知识系统、生活方式与精神财富
Whatisthemainproblemcausedbytheusualwayofplowing?
Hecanonlyblamehimselfforfailingtheexam.He______harderduringtheyear,butheseemedtogooutwithadifferentgift
最新回复
(
0
)