首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs是n维向量组,r(α1,α2,…,αs)=r,则( )不正确.
设α1,α2,…,αs是n维向量组,r(α1,α2,…,αs)=r,则( )不正确.
admin
2019-07-12
57
问题
设α
1
,α
2
,…,α
s
是n维向量组,r(α
1
,α
2
,…,α
s
)=r,则( )不正确.
选项
A、如果r=n,则任何n维向量都可用α
1
,α
2
,…,α
s
线性表示.
B、如果任何n维向量都可用α
1
,α
2
,…,α
s
线性表示,则r=n.
C、如果r=s,则任何n维向量都可用α
1
,α
2
,…,α
s
唯一线性表示.
D、如果r<n,则存在n维向量不能用α
1
,α
2
,…,α
s
线性表示.
答案
C
解析
利用“用秩判断线性表示”的有关性质.
当r=n时,任何n维向量添加进α
1
,α
2
,…,α
s
时,秩不可能增大,从而(A)正确.
如果(B)的条件成立,则任何n维向量组β
1
,β
2
,…,β
t
都可用α
1
,α
2
,…,α
s
线性表示,从而r(β
1
,β
2
,…,β
t
)≤r(α
1
,α
2
,…,α
s
).如果取β
1
,β
2
,…,β
n
是一个n阶可逆矩阵的列向量组,则得
n=r(β
1
,β
2
,…,β
n
)≤r(α
1
,α
2
,…,α
s
)≤n,
从而r(α
1
,α
2
,…,α
s
)=n,(B)正确.
(D)是(B)的逆否命题,也正确.
由排除法,得选项应该为(C).下面分析为什么(C)不正确.
r=s只能说明α
1
,α
2
,…,α
s
线性无关,如果r<n,则用(B)的逆否命题知道存在n维向量不可用α
1
,α
2
,…,α
s
线性表示,因此(C)不正确.
转载请注明原文地址:https://www.kaotiyun.com/show/cjJ4777K
0
考研数学三
相关试题推荐
设A=,a,b为何值时,存在矩阵C,使得AC一CA=B,并求所有矩阵C。
设矩阵A=,且秩(A)=3,则k=_________。
设三阶矩阵A的特征值为2,一2,1,B=A2一A+E,其中E为三阶单位矩阵,则行列式|B|=__________。
设A是n阶矩阵,α是n维列向量。若=r(A),则线性方程组()
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.①求A的特征值.②求A的特征向量.③求A*一6E的秩.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化.
设f(x)具有连续导数,且F(x)=∫0x(x2一t2)f’(t)dt,若当x→0时F’(x)与x2为等价无穷小,则f’(0)=___________.
(2015年)设函数f(x)=x+aln(1+x)+bxsinx,g(x)=kx3.若f(x)与g(x)在x→0时是等价无穷小,求a,b,k的值.
随机试题
在横断层面上,腕横韧带向桡侧附着于手舟骨结节和大多角骨结节,其间形成_______________,内有_______________通过;向尺侧附着于豌豆骨和钩骨钩,与其浅面的腕掌侧韧带形成_______________,内有______________
苯丙酮尿症最突出的临床特点是
所谓利息,是与信用相伴随的一个经济范畴,是货币所有者因贷出货币而从借贷人那里获得的报酬。()
依据我国《海商法》和《物权法》的相关规定,关于船舶所有权,下列哪一表述是正确的?
醚类燃烧时可能出现的现象为()。
下列关于作者与作品的组合中,正确的是()。
习近平在全国教育大会上指出,为完成教育工作的根本任务,要在六个方面下功夫,其中包括()。
InJuly1994Jupiter,thelargestplanetinoursolarsystem,wasstruckby21piecesofacomet(彗星).Whenthefragments(碎片)l
Theselfishnessofhumansisacentralassumptionoforthodox(传统的)economics,whereitisthoughttoleadtobenefitsfortheeco
A、Thedevelopmentofjazzmusic.B、ThemusiciannamedCharlieParker.C、Thenewstyleofjazzcalledbebop.D、ThedeathofCharl
最新回复
(
0
)