首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的基础解系.
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的基础解系.
admin
2021-02-25
79
问题
已知α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+tα
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是Ax=0的基础解系.
选项
答案
证法1:由于 [*] 故β
1
,β
2
,β
3
,β
4
线性无关的充分必要条件是 [*] 即t≠±1时,β
1
,β
2
,β
3
,β
4
为Ax=0的基础解系. 证法2: 设k
1
,k
2
,k
3
,k
4
使 k
1
(α
1
+tα
2
)+k
2
(α
2
+tα
3
)+k
3
(α
3
+tα
4
)+k
4
(α
4
+tα
1
)=0, 即 (k
1
+tk
4
)α
1
+(tk
1
+k
2
)α
2
+(tk
2
+k
3
)α
3
+(tk
3
+k
4
)α
4
=0, 由于α
1
,α
2
,α
3
,α
4
线性无关,得 [*] 此方程组只有零解时,β
1
,β
2
,β
3
,β
4
才是Ax=0的基础解系.以下与“证法1”相同,即当t≠±1时,β
1
,β
2
,β
3
,β
4
是Ax=0的基础解系.
解析
本题考查齐次线性方程组的基础解系的概念、解的性质和向量组线性相关性的证明方法,注意到β
1
,β
2
,β
3
,β
4
是Ax=0的基础解系的充分必要条件是β
1
,β
2
,β
3
,β
4
线性无关.
转载请注明原文地址:https://www.kaotiyun.com/show/ca84777K
0
考研数学二
相关试题推荐
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ线性无关。
设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.
设A是n阶可逆阵,其每行元素之和都等于常数a,证明:(1)a≠0;(2)A-1的每行元素之和均为.
已知矩阵A与B相似,其中。求a,b的值及矩阵P,使P—1AP=B。
已知三角形周长为2p,求出这样一个三角形,使它绕自己的一边旋转时体积最大.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
下列矩阵中两两相似的是
设A=,则下列矩阵中与A合同但不相似的是
随机试题
下列各项中,不应列入利润表“营业收入”项目的是()。
识记
急性肝炎时,LD同工酶谱中以何种增高为主
不发生相互作用的免疫细胞膜分子是
A.乳果糖B.生长抑素C.柳氮磺胺吡啶D.左旋多巴E.利福平主要用于治疗溃疡性结肠炎的药物是
“蓝牙”技术是()。
大理石具有( )等优点。
教育情境
增强现实技术是一种实时地计算摄影机影像的位置及角度并加上相应图像的技术,这种技术的目标是在屏幕上把虚拟世界套在现实世界并进行互动。根据上述定义。下列属于增强现实技术的是:
印记学习是指发生在动物生活的早期阶段、由直接印象形成的学习行为,印记学习行为虽发生在早期,但对晚期行为也具有一定影响。根据上述定义,下列不属于印记学习行为的是()。
最新回复
(
0
)