首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
admin
2018-09-20
74
问题
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
选项
答案
充分性 因r(A)<n,故AX=0有非零解,将非零解X组成B,则B≠O,且有AB=O. 必要性 若AB=O,其中B≠O,设B=[β
1
,β
2
,…,β
s
],则Aβ
i
=0,i=1,2,…,s.其中β
i
(i=1, 2,…,s)不全为0,即AX=0有非零解,故r(A)<n.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/cRW4777K
0
考研数学三
相关试题推荐
设A是3阶实对称矩阵,A的特征值是6,-6,0,其中λ=6与λ=0的特征向量分别是(1,a,1)T及(a,a+1,1)T,求矩阵A.
设f(x)连续,证明:
(u,y,z)具有连续偏导数,而x=rsinφcosθ,y=rsinφsinθ,z=rcosφ.(Ⅰ)若,试证明u仅为φ与θ的函数;(Ⅱ)若,试证明u仅为r的函数.
设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零.记F(x)=.证明:F(x)在(a,+∞)内单调增加.
用配方法化二次型x1x2+2x2x3为标准形,并写出所用满秩线性变换.
设A是3阶实对称矩阵,特征值是0,1,2.如果λ=0与λ=1的特征向量分别是α1=(1,2,1)T与α2=(1,-1,1)T,则λ=2的特征向量是_______.
设函数f(x)在[0,1]上具有二阶导数,且f(0)=f(1)=0,=-1.证明:
设A=其中ai≠aj(i≠j,i,j=1,2,…,n),则线性方程组ATx=B的解是______.
参数a取何值时,线性方程组有无数个解?求其通解.
随机试题
我国公务员法规定公务员应当履行的义务有()
在六淫中,易扰心神的病邪是
胃切除术后患者取半坐卧位的目是:
下列关于贷款种类说法错误的是()。
证券公司承销证券,应当同发行人签订代销或者包销协议。证券的代销、包销期限最长不得超过()日。
下列项目中,属于土地增值税免税范围的有()。
采购计划实施的要求有________。
《灰姑娘》《丑小鸭》《海的女儿》都出自《安徒生童话》。()
在明朝法律上,厂卫机构具有以下哪些司法特权?()
Opinionpollsarenowbeginningtoshowanunwillinggeneralagreementthat,whoeveristoblameandwhateverhappensfromnowo
最新回复
(
0
)