首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零.记F(x)=.证明:F(x)在(a,+∞)内单调增加.
设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零.记F(x)=.证明:F(x)在(a,+∞)内单调增加.
admin
2016-10-20
79
问题
设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零.记F(x)=
.证明:F(x)在(a,+∞)内单调增加.
选项
答案
(1)证明F’(x)>0(x>a).由题设条件,有 [*] 由拉格朗日中值定理知,存在ξ(a<ξ<x)使得 [*] 由f’’(x)>0,可知f’(x)在(a,+∞)内单调增加.因此,对于任何满足a<ξ<x的x和ξ,有f’(x)>f’(ξ).又x-a>0,从而由②可知F’(x)>0,于是F(x)是单调增加的. (2)由①式有[*],其中 φ(x)=f’(x)(x-a)-f(x)+f(a)(x>a),φ(a)=0. 由φ’’(x)=f’’(x)(x-a)>0,可知φ(x)在(a,+∞)上单调上升,从而当x>a时,φ(x)>φ(a)=0,于是F’(x)=[*],所以F(x)单调上升.
解析
要证F(x)在(a,+∞)内单调增加,只需证F’(x)>0,为此需先求出F’(x).条件“f”(x)在(a,+∞)内存在且大于零”隐含着f’(x)在(a,+∞)上单调上升,因此要充分利用这一信息来证明F’(x)>0.
转载请注明原文地址:https://www.kaotiyun.com/show/YiT4777K
0
考研数学三
相关试题推荐
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
求下列函数的n阶导数的一般表达式:(1)y=xn+a1xn-1+a2xn-2+…+an-1x+an(a1,a2,…,an都是常数);(2)y=sin2x;(3)y=x-1/x+1;(4)y=ln1+x/1-x.
设总体X的概率密度为F(x)=1/2e-|x|(-∞<x<+∞),X1,X2,…,Xn为总体X的简单随机样本,其样本方差S2,则E(S2)=__________.
随机试题
依据《票据法》的规定,承兑行为只存在于下列哪种票据关系之中()
关于上消化道出血下列哪一项描述是不正确的()
A、从前向后就位B、从后向前就位C、左侧先就位D、右侧先就位E、垂直就位倒凹集中在左侧,义齿应
女31岁,2年前因胃出血行胃大部切除术,近1年半来头晕,乏力,面色逐渐苍白,平时月经量稍多,检查:Hb76g/L,RBC3.1×1012/L,WBC5.3×109/L,网织红细胞0.015,在进行体格检查时,不可能出现的体征是
法律发展
地籍平面控制点的密度每1km2不应少于()。
下列各项中,关于原始凭证的说法,正确的有()。
下列说法中,属于证券私募发行优点的有()。
平视是一种严肃的人生态度,是不带色彩的客观,是超越功利的公正,是抛却杂念的单纯,但并非人人都可做到。平视,需要心的正直与坦荡;平视,需要情的____________;平视,需要识的___________;平视,需要度的____________。填入画横线部
微型计算机中使用的关系数据库,就应用领域而言是属于
最新回复
(
0
)