首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
admin
2019-07-12
101
问题
已知β
1
,β
2
是非齐次线性方程组Ax=b的两个不同的解,α
1
,α
2
是对应齐次线性方程组Ax=0的基础解系,k
1
,k
2
为任意常数,则方程组Ax=b的通解必是
选项
A、k
1
α
1
+k
2
(α
1
+α
2
)+(β
1
-β
2
)/2.
B、k
1
α
1
+k
2
(α
1
-α
2
)+(β
1
+β
2
)/2.
C、k
1
α
1
+k
2
(β
1
+β
2
)+(β
1
-β
2
)/2.
D、k
1
α
1
+k
2
(β
1
-β
2
)+(β
1
-β
2
)/2.
答案
B
解析
本题考查解的性质与解的结构.从α
1
,α
2
是Ax=0的基础解系,知Ax=b的通解形式为
k
1
η
1
+k
2
η
1
+ξ,
其中,η
1
,η
2
是Ax=0的基础解系,ξ是Ax=b的解.
由解的性质知:α
1
,α
1
+α
2
,(β
1
-β
2
)/2,α
1
-α
2
,β
1
-β
2
都是Ax=0的解,(β
1
+β
2
)是Ax=b的解.
那么(A)中没有特解ξ,(C)中既没有特解ξ,且β
1
+β
2
也不是Ax=0的解.(D)中虽有特解,但
α
1
,β
1
-β
2
的线性相关性不能判定,故(A)、(C)、(D)均不正确.
唯(B)中,(β
1
-β
2
)/2是Ax=b的解,α
1
,α
1
+α
2
是Ax=0的线性无关的解,是基础解系.故应选(B).
转载请注明原文地址:https://www.kaotiyun.com/show/cRJ4777K
0
考研数学三
相关试题推荐
设X~N(0,1),Y=X2,求Y的概率密度函数.
设f(x)在[0,+∞)上连续,且f(0)>0,设f(x)在[0,x]上的平均值等于f(0)与f(x)的几何平均数,求f(x).
差分方程yx+1一yx=x2x的通解为___________.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2一F3α3,α1+4α2+9α3线性无关.
求幂级数的和函数.
(2002年)设随机变量X和Y都服从标准正态分布,则()
确定常数a,b,C,使得
设f(x)=3x2+Ax-3(x>0),A为正常数,问A至少为多少时,f(x)≥20?
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电.以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
随机试题
中国共产党立党立国的根本指导思想,全国各族人民团结奋斗的共同思想基础是()
与固定义齿支持直接有关的是
突触前抑制的结构中除含轴突-胞体突触外,还联合有
根据《水污染防治行动计划》,下列内容中,不属于2020年工作目标的是()。
以下关于分部工程及分部工程验收的说法,正确的是()。
下列关于典型的质量形成过程阶段及相关内容的表述错误的是()。
公安机关的职责是由()所确认的。
设关系R与关系S具有相同的目,且相对应的属性的值取自同一个域,则R∪S可记作
Abird’splumage,whilecontributingtostructuralintegrityandparticipatinginaeriallocomotion,completelyobscuresabird’
Strangethingshappentotimewhenyoutravel,becausetheearthis(11)intotwenty-fourtimezones(时区),onehourseparate.
最新回复
(
0
)