首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy.
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy.
admin
2019-04-17
97
问题
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,
f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
xyf"xy(x,y)dxdy.
选项
答案
因为f(1,y)=0,f(x,1)=0,所以f
y
’
(1,y)=0,f
x
’
(x,1)=0. 从而 I=∫
0
1
xdx∫
0
1
yf(x,y)dy=∫
0
1
x[yf
x
’
(x,y)∫
0
1
一f
x
’
(x,y)dy]dx =一∫
0
1
dy∫
0
1
xf
x
’
(x,y)dx=一∫
0
1
[xf(x,y)|
x=0
x=1
一∫
0
1
f(x,y)dx]dy =∫
0
1
dy∫
0
1
f(x,y)dx=a. a=∫
0
1
dy∫
0
1
f(x,y)dx =∫
0
1
[xf(x,y)|
x=0
x=1
一∫
0
1
xf
x
’
(x,y)dx]dy =一∫
0
1
dx∫
0
1
xf
x
’
(x,y)dy =一∫
0
1
[xf
x
’
(x,y)=|
y=0
y=1
一∫
0
1
xyf
xy
"
(x,y)dy]dx =[*]xy f
xy
"
(x,y)dσ 这里用到了条件f(1,y)=0,f(x,1)=0,并由此有f
y
’
(1,y)=0,f
x
’
(x,1)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/cDV4777K
0
考研数学二
相关试题推荐
设f(χ)在区间[0,1]上连续,证明:∫01f(χ)dχ∫χ1f(y)dy=[∫01f(χ)dχ]2.
给定曲线y=χ2+5χ+4,(Ⅰ)确定b的值,使直线y=-χ+b为曲线的法线;(Ⅱ)求过点(0,3)的切线.
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
设(Ⅰ)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(-1,0,1,0)T,ξ3=(0,1,1,0)T是(Ⅰ)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,-1,0)T是(Ⅱ)的一个基础解系.求(Ⅰ)和(Ⅱ)公共解.
已知齐次线性方程组其中≠0,试讨论a1,a2,…,an和b满足何种关系时.(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
设f(χ,y)二阶连续可偏导,g(χ,y)=f(eχy,χ2+y2),且f(χ,y)=1-χ-y+o(),证明:g(χ,y)在(0,0)处取极值,并判断是极大值还是极小值,求极值.
求下列不定积分:(Ⅰ)∫arcsinx.arccosxdx;(Ⅱ)∫x2sin2xdx;(Ⅲ)
设3阶实对称矩阵A的特征值为1,2,3,η1=(-1,-1,1)T和η2=(1,-2,-1)T分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
随机试题
引起再障最常见的药物是()
生物对某种环境因素都有一个忍受范围,即有一个上限和下限,上限和下限之间的范围称为________。
口腔临床感染最危险又最典型的是高速涡轮牙钻雾化,产生的颗粒在空气中可传播
刑罚分为主刑和附加刑。主刑的种类有( )。
期货交易所、期货公司、非期货公司结算会员应当按照国务院期货监督管理机构、财政部门的规定提取、管理和使用( ),不得挪用。
在对成本进行分类,以便归集责任中心的成本时,所确定的不可控成本都是固定成本。( )
硬山式屋顶的房屋两侧屋面伸出山墙之外。()
ENGLAND’SECONOMYINTHE16THCENTURY(1)Inthelasthalfofthe16thcenturyEnglandemergedasacommercialandmanufactu
IamashamedmbeginwithsayingthatTouraineisthegardenofFrance;thatremarkhaslongagolostitsbloom.ThetownofTou
TheiPhonehastakenabigbiteoutoftheBlackBerryinamarketwheretheolderphoneoncedominated:businesscustomersinN
最新回复
(
0
)