首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求a,b及可逆矩阵P,使得P-1AP=B.
求a,b及可逆矩阵P,使得P-1AP=B.
admin
2018-05-21
35
问题
求a,b及可逆矩阵P,使得P
-1
AP=B.
选项
答案
由|λE-B|=0,得λ
1
=-1,λ
2
=1,λ
3
=2,因为A~B,所以A的特征值为λ
1
=-1, λ
2
=1,λ
3
=2. 由tr(A)=λ
1
+λ
2
+λ
3
,得a=1,再由|A|=b=λ
1
λ
2
λ
3
=-2,得b=-2,即A [*] 由(-E-A)X=0,得ξ
1
=(1,1,0)
T
; 由(E-A)X=0,得ξ
2
=(-2,1,1)
T
; 由(2E-A)X=0,得ξ
3
=(-2,1,0)
T
, [*] 由(-E-B)X=0,得η
1
=(-1,0,1)
T
; 由(E-B)X=0,得η
2
=(1,0,0)
T
; 由(2E-B)X=0,得η
3
=(8,3,4)
T
, [*] 由P
1
-1
AP
1
=P
2
-1
BP
2
,得(P
1
P
2
-1
)
-1
AP
1
P
2
-1
=B, 令P=P
1
P
2
-1
[*] 则P
-1
AP=B.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/c7r4777K
0
考研数学一
相关试题推荐
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy.
设α1,α2,α3是三维向量空间R3中的一组基,则由基α2,α1一α2,α1+α3到基α1+α2,α3,α2一α1的过渡矩阵为()
设α,β均为n维非零列向量,且αtβ≠o.设矩阵A=αβT一E,且满足方程A2一3A=4E,则αT2=________.
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则r(β4,β2,β3,β4)=()
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B;(Ⅱ)求矩阵A的特征值;(Ⅲ)求可逆矩阵P,使
设二次型f(x1,x2,x3)=xTAx=x12+ax22+3x32一4x1x2—8x1x3—4x2x3,其中一2是二次型矩阵A的一个特征值.(Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换;(Ⅱ)如果A*+kE是正定矩阵,求k的取值范围.
设X1,X2,…,Xn是来自总体X~N(0,σ2)的一个简单随机样本,则统计量Y=的数学期望与方差分别为()
设A是n(n>1)阶方阵,ξ1,ξ2,…,ξn是n维列向量,已知Aξ1=ξ2,Aξ2=ξ3,…,Aξn一1=ξn,Aξn=0,且ξn≠0.(Ⅰ)证明ξ1,ξ2,…,ξn线性无关;(Ⅱ)求Ax=0的通解;(Ⅲ)求出A的全部特征值和特征向量,并证明A不可
随机试题
支气管、肺组织感染和阻塞是主要发病因素的疾病是
甲与母亲、妻子出游,母亲、妻子同时落水,甲救助母亲而未来得及救助妻子,致妻子溺水死亡。对甲的行为定性,下列选项错误的是:()
在桥梁构造中,人行道一般应高出行车道()。
同一控制下的企业合并,合并方在企业合并中取得的资产和负债,应当按照合并日在被合并方的()计量。
下列关于无形资产的会计处理,表述不正确的是()。
将①~⑤段文字填入下文横线处,排列顺序衔接最恰当、语意表达最准确的一组是( )。党的十七大报告清醒的认识到。_____从而正式宣告了全面改善民生时代的到来。①并在客观认识现存民生问题的基础上,突出地强调了社会公平、正义、共享的发展理念②收入分配差距
(2010年联考.9月.24)3,5,10,25,75,(),875。
下列哪项不是脊休克的表现
Whileweareyoung,wearecontinually______newideas,alteringourthoughtpatterns,makingupourmindsafresh.
(31)withthehumaneye,acat’s(32)havemorerodsthancones,(33)helpsthecatseeinthedark.Catsalsohaveellipticalp
最新回复
(
0
)