首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量(X,Y)服从区域D上的均匀分布,D={(x,y)︱0≤x≤2,0≤y≤2},令U=(X+Y)2,试求EU与DU。
设随机变量(X,Y)服从区域D上的均匀分布,D={(x,y)︱0≤x≤2,0≤y≤2},令U=(X+Y)2,试求EU与DU。
admin
2018-11-16
82
问题
设随机变量(X,Y)服从区域D上的均匀分布,D={(x,y)︱0≤x≤2,0≤y≤2},令U=(X+Y)
2
,试求EU与DU。
选项
答案
求一个随机变量U的数字特征,可以先求出U的概率密度,在计算EU与DU。 方法一:令V=X+Y,先求V的分布函数F(ν)与密度函数f(ν)。 [*] 其中D
1
与D
2
如图所示,于是[*] [*] 故[*], 又[*], 因此[*]。 方法二:直接应用随机变量函数的期望公式:若(X,Y)~f(x,y),则有[*]。 具体到本题f(x,y)= [*]。 方法三:就本题具体条件可以判断该二维均匀分布随机变量(X,Y)的两个分量X与Y相互独立,且都服从区间[0,2]上均匀分布,因此有[*],EU
2
=E(X+Y)
4
=EX
4
+4EX
3
Y+6EX
2
Y
2
+4EXY
3
+EY
4
。 由于X与Y独立,因此X
3
与Y,X
2
与Y
2
,X与Y
3
也分别独立,其乘积的期望等于期望的乘积。 EU
2
=EX
4
+4EX
3
EY+6EX
2
EY
2
+4EXEY
3
+EY
4
=[*],DU=EU
2
-(EU)
2
=[*]。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/byW4777K
0
考研数学三
相关试题推荐
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设X~U(一1,1),Y=X2,判断X,Y的独立性与相关性.
设随机变量X方差为2,则根据切比雪夫不等式有估计P{|X一E(X)|≥2)≤________.
设两台同样的记录仪,每台无故障工作的时间服从参数为5的指数分布,首先开动其中一台,当发生故障时停用而另一台自动开动,求两台记录仪无故障工作的总时间T的概率密度.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)一f(1)].若f(1)=,求:f(x);
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(b)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:|f(c)|≤2a+.
函数在区间[0,2]上的平均值为________.
设m,n均是正整数,则反常积分的收敛性()
根据以往经验,某种电器元件的寿命服从均值为100小时的指数分布。现随机地取16只,设它们的寿命是相互独立的。求这16只元件的寿命的总和大于1920小时的概率。
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。(Ⅰ)写出f(x)在[—2,0)上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导。
随机试题
通入水中,水仍保持中性的气体是
乳房深部脓肿,诊断依据应是()
关于股东代表诉讼,下列说法符合《公司法》规定的有()。
下列消费品中属于消费税征税范同的有()。
老王两年前投资的一套艺术品市价上涨了50%,为尽快出手,老王将该艺术品按市价的8折出售,扣除成交价5%的交易费用后,发现与买进时相比赚了7万元。问老王买进该艺术品花了多少万元?()
黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,被公认为最具有审美意义的比例数字,是最能引起人的美感的比例,因此被称为黄金分割。那么这个黄金分割点是多少?()
A、 B、 C、 D、 C图形均有5个封闭区域,其中内部最大的封闭区域的形状与外部轮廓相同,C符合。
结合图形从总供给总需求模型推导短期和长期的菲利普斯曲线。[西南财经大学802经济学二2014研]
Concernsafewyearsagothatstudentswouldbeforcedtousestimulantsinthefightforclassrankandhonorsthusseemtobe
Shynessisthecauseofmuchunhappinessforagreatmanypeople.Shypeopleareanxiousand【B1】______;thatis,theyareexces
最新回复
(
0
)