首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组的一个基础解系为(b11,b12,…,b1.2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
已知方程组的一个基础解系为(b11,b12,…,b1.2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
admin
2017-01-21
93
问题
已知方程组
的一个基础解系为(b
11
,b
12
,…,b
1.2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
。试写出线性方程组
的通解,并说明理由。
选项
答案
由题意可知,线性方程组(2)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+ c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
,其中c
1
,c
2
,…,c
n
是任意的常数。 这是因为: 设方程组(1)和(2)的系数矩阵分别为A,B,则根据题意可知AB
T
=D,因此 BA
T
=(AB
T
)
T
=0, 可见A的n个行向量的转置为(2)的n个解向量。 由于B的秩为n,所以(2)的解空间的维数为2n—r(B)=2n一n=n,又因为A的秩等于2n与(1)的解空间的维数的差,即n,因此A的n个行向量是线性无关的,从而它们的转置向量构成(2)的一个基础解系。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/92H4777K
0
考研数学三
相关试题推荐
计算不定积分
A、 B、 C、 D、 D
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
已知线性方程组(I)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设有一根细棒,取棒的一端作为原点,棒上任意点的坐标为x.于足分布在区间[0,x]上细棒的质量m是x的函数m=m(x).应怎样确定细棒在点x。处的线密度(对于均匀细棒来说,单位长度细棒的质量叫做这细棒的线密度)?
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围________.
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.
随机试题
气瘿的内治疗是()
脉搏短绌常见于下列哪种疾病()
选择适当大小的网格是网格制图的关键,最好选择两种以上能被标准分幅的()地籍图图幅边长整除的网格。
某60m高层办公楼中,自备柴油发电机房所配备的日用油箱间内的油箱容积须满足()。
关于风管安装的要求,正确的有()。
赵某购买一套价格为100万元的住房,法定最低首付款比例为30%,住房公积金贷款最高额度为50万元,住房公积金贷款年利率为4.5%,商业银行贷款年利率为6.5%,最长贷款期限为30年。根据以上资料,回答下列问题:若赵某可用足其住房公积金贷款额度,则
清明扫墓的习俗源于古代的春祭,野外扫墓的风俗始于隋唐交替之际,宋朝时开始盛行,并把家家户户的扫墓活动固定在清明节举行。以后则代代相传,一直沿袭至今。()
在2008年8月8日至24日奥运会期间,北京市的空气质量不仅天天达标,而且有10天达到一级,全面兑现了对奥运会空气质量的承诺。下图是2008年1-8月北京市大气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量达标天
“十一五”期间,我国城镇就业人员增长持续快于全国,城镇就业人员占全国就业人员总量的比重从2005年的36.0%上升到2009年的39.9%。我国第一产业就业人员由2005年的33970万人,减少到2009年的29708万人,年均减少1066万人;
下列关于自助行为的说法,正确的是()
最新回复
(
0
)