首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
admin
2019-11-25
59
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
选项
答案
设f’
+
(a)>0,f’
-
(b)>0, 由f’
+
(a)>0,存在x
1
∈(a,b),使得f(x
1
)>f(a)=0; 由f’
-
(b)>0,存在x
2
∈(a,b),使得f(x
2
)<f(b)=0, 因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(a,b),使得f(c)=0. 令h(x)=[*],显然h(x)在[a,b]上连续,由h(a)=h(c)=h(b)=0, 存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h’(ξ
1
)=h’(ξ
2
)=0, 而h’(x)=[*],所以[*], 令φ(x)=f’(x)g(x)-f(x)g’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ’(ξ)=0, 而φ’(x)=f”(x)g(x)-f(x)g”(x),所以[*].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/bID4777K
0
考研数学三
相关试题推荐
设随机变量X的概率密度为已知EX=2,P{1<X<3}=求(1)a,b,c的值;(2)随机变量Y=eX的数学期望和方差.
已知随机变量X和Y均服从正态分布N(0,1),则()
设0<k<1,f(x)=kx—arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x0)=0.
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
函数f(x)=
设平面区域D由曲线y=(xy3一1)dσ等于()
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设随机事件A与B互不相容,且A=B,则P(A)=______.
设随机变量序列X1,…Xn,…相互独立,根据辛钦大数定律,当n→∞时依概率收敛于其数学期望,只要{Xn,n≥1}
随机试题
关于心肌有效不应期的叙述,哪项是正确的
简述《普通高中地理课程标准(实验)》“教学建议”中“发展学生的批判性思维和创新思维”的内容,并举例说明。
下列各项中符合炎性息肉特点的是()
下列对供热管道用蒸汽清(吹)洗的要求不正确的是()
按照《建筑法》及相关法规的规定,大型建筑工程或结构复杂的建筑工程,可由两个以上承包单位结成联合体共同承包。对此,下列表述中正确的是()。
用友报表系统中,取数函数包括( )。
下列属于本票基本当事人的有()。
高速公路上行驶的汽车A的速度是100公里每小时,汽车B的速度是120公里每小时,此刻汽车A在汽车B前方80公里处,汽车A中途加油停车10分钟后继续向前行驶。那么从两车相距80公里处开始,汽车B至少要多长时间可以追上汽车A?()
A、 B、 C、 D、 A
Incontrasttotraditionalanalysesofminoritybusiness,thesociologicalanalysiscontendsthatminoritybusinessownershipis
最新回复
(
0
)