首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A和B都是n阶矩阵.给出下列条件 ①A是数量矩阵. ②A和B都可逆. ③(A+B)2=A2+2AB+B2. ④AB=cE. ⑤(AB)2=A2B2. 则其中可推出AB=BA的有( )
A和B都是n阶矩阵.给出下列条件 ①A是数量矩阵. ②A和B都可逆. ③(A+B)2=A2+2AB+B2. ④AB=cE. ⑤(AB)2=A2B2. 则其中可推出AB=BA的有( )
admin
2018-11-23
58
问题
A和B都是n阶矩阵.给出下列条件
①A是数量矩阵.
②A和B都可逆.
③(A+B)
2
=A
2
+2AB+B
2
.
④AB=cE.
⑤(AB)
2
=A
2
B
2
.
则其中可推出AB=BA的有( )
选项
A、①②③④⑤.
B、①③⑤.
C、①③④.
D、①③.
答案
D
解析
①和③的成立是明显的.②是不对的,如
④AB=cE,在c≠0时可推出AB=BA,但是c=0时则推不出AB=BA.
⑤(AB)
2
=A
2
B
2
推不出AB=BA.对于④中的A和B,(AB)
2
和A
2
B
2
都是零矩阵,但是AB≠BA.
转载请注明原文地址:https://www.kaotiyun.com/show/a9M4777K
0
考研数学一
相关试题推荐
设η1,…,ηs是非齐次线性方程组AX=b的一组解,则k1η1+…+ksηs为方程组AX=b的解的充分必要条件是___________.
设A是一个n阶矩阵,且A2-2A-8E=O,则r(4E-A)+r(2E+A)=_______.
点(1,2,3)到直线的距离为_________
以yOz坐标面上的平面曲线段y=f(x)(0≤z≤h)绕z轴旋转所构成的旋转曲面和xOy坐标面围成一个无盖容器,已知它的底面积为16πcm2,如果以3cm3/s的速率把水注入容器,水表面的面积以πcm2/s增大,试求曲线y=f(z)的方程.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22一2x32+2bx1x3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为一12.(1)求a、b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
设有线性方程组(1)证明:当a1,a2,a3,a4两两不等时,此方程组无解;(2)设a1=a3=k,a2=a4=一k(k≠0)时,β1=(一1,1,1)T,β2=(1,1,一1)T是方程组的两个解,写出此方程组的通解.
设α为实n维非零列向量,αT表示α的转置.(1)证明:为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为n维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
测得两批电子器材的部分电阻值为:A批:140,138,143,142,144,139;B批:135,140,142,136,135,140.设两批电子器材的电阻均服从正态分布,试在α=0.05下检验这两批电子器材的平均电阻有无显著差异
设A,B,C是三个相互独立的随机事件,且0<P(C)<1,则在下列给定的四对事件中可能不相互独立的是()
随机试题
SupermarketMostsupermarketsneedaverylargefloorarea,sometimesatleasttentimesasbigasthatofanordinaryshop.
当一个早反应组织中出现了晚反应组织性质的肿瘤,在进行根治性放疗时,你认为不合理的是
由于热量和营养素不足,只能短期使用的饮食是
工程咨询单位建立质量管理体系,应根据咨询行业的特点,在资源管理中突出()。
监理工程师对承包单位施工进度计划的审查或批准,这样做()。
下列选项中,属于发展中国家跨国公司对外投资主要竞争优势的有()。
经济基础决定上层建筑,上层建筑作用于经济基础。()
个体一生中词汇数量增加最快的时期是()
资本原始积累的主要途径有()
A、Davidhadbeensellingcars.B、Davidhadtaughtbusiness.C、Davidhadbecomeasalesman.D、Davidhadmadealotofmoney.DWha
最新回复
(
0
)