首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续可导,f(1)=0,∫x1xf’(x)dx=2,证明:存在ζ∈[0,1],使得f’(ζ)=4。
设f(x)在[0,1]上连续可导,f(1)=0,∫x1xf’(x)dx=2,证明:存在ζ∈[0,1],使得f’(ζ)=4。
admin
2021-01-28
82
问题
设f(x)在[0,1]上连续可导,f(1)=0,∫
x
1
xf’(x)dx=2,证明:存在ζ∈[0,1],使得f’(ζ)=4。
选项
答案
由分部积分,得 ∫
0
1
xf’(x)dx=xf(x)|
0
1
-∫
0
1
f(x)dx=-∫
0
1
f(x)dx=2; 于是∫
0
1
f(x)dx=-2。 由拉格朗日中值定理,得f(x)=f(x)-f(1)=f’(η)(x-1),其中η∈(x,1), f(x)=f’(η)(x-1)两边对x从0到1积分,得∫
0
1
f(x)dx=∫
0
1
f’(η)(x-1)dx=-2, 因为f’(x)在[0,1]上连续,所以f’(x)在[0,1]上取到最小值m和最大值M, 由M(x-1)≤f’(η)(x-1)≤m(x-1)两边对x从0到1积分, 得-M/2≤∫
0
1
f’(η)(x-1)dx≤-m/2,即m≤4≤M, 由介值定理,存在ζ∈[0,1],使得f’(ζ)=4。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Zqx4777K
0
考研数学三
相关试题推荐
设A为n阶矩阵,且|A|=0,Aki≠0,则AX=0的通解为________.
设n阶矩阵A的各行元素之和均为零,且A的秩为n一1,则线性方程组AX=0的通解为________。
=______.
独立投骰子两次,X,Y表示投出的点数,令A={X+Y=10),B={X>Y),则P(A+B)=________.
设函数y=1/(2x+3),则y(n)(0)=______.
级数的和为_________.
若二阶常系数齐次线性微分方程y’’+py’+qy=0的一个特解为y=2excosx,则微分方程y’’+py’+qy=exsinx的特解形式为().
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=_______________.
(95年)设f(χ)、g(χ)在区间[-a,a](a>0)上连续.g(χ)为偶函数,且f(χ)满足条件f(χ)+f(-χ)=A(A为常数)(1)证明∫-aaf(χ)g(χ)dχ=A∫0ag(χ)dχ(2)利用(1)的结论计算定积分|si
求∫x2arctanxdx.
随机试题
理中丸,臣药是
不适用于血管内栓塞治疗的外伤性出血
毒性药品是指
某村医发现1名无执业医师证的“游医”在村里摆摊行医,自称有祖传秘方能医治多重疾病。村医对此事件的处理方式是
成人患牙三氧化二砷封药时间为
甲有乙、丙和丁三个女儿。甲于2013年1月1日亲笔书写一份遗嘱,写明其全部遗产由乙继承,并签名和注明年月日。同年3月2日,甲又请张律师代书一份遗嘱,写明其全部遗产由丙继承。同年5月3日,甲因病被丁送至医院急救,甲又立口头遗嘱一份,内容是其全部遗产由丁继承,
2017年,我国研究生招生61.1万人,在学研究生179.4万人,毕业生51.4万人。普通本专科在校生2468.1万人,毕业生638.7万人。中等职业教育在校生1960.2万人,毕业生678.1万人。普通高中在校生2435.9万人,毕业生799.0人。初中
根据以下资料,回答以下问题。我国2012年7月份外贸出口同比仅增长1%,主要原因是当月我国对欧盟的出口大幅度下降所导致,预计下半年中国外贸形势将更加严峻。2012年1~7月,我国进出口总值21683.7亿美元,比去年同期增长7.1%。其
(08年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=[α1,α2,α3],求P-1AP.
Mostnursesarewomen,butinthehigherranksofthemedicalprofessionwomenareina______.
最新回复
(
0
)