首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且又f’(x)=-2x2+∫0xg(x-t)dt,则( ).
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且又f’(x)=-2x2+∫0xg(x-t)dt,则( ).
admin
2018-05-25
72
问题
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且
又f’(x)=-2x
2
+∫
0
x
g(x-t)dt,则( ).
选项
A、x=0是f(x)的极大值点
B、x=0是f(x)的极小值点
C、(0,f(0))是曲线y=f(x)的拐点
D、x=0不是f(x)的极值点,(0,f(0))也不是曲线y=f(x)的拐点
答案
C
解析
由
得g(0)=g’(0)=0,f’(0)=0,f’(x)=-2x
2
+∫
0
x
g(x-t)dt=-2x
2
-∫
0
x
g(x-t)d(z-t)=-2x
2
+∫
0
x
g(u)du,f’’(x)=-4x+g(x),f’’(0)=0,f’’(x)=-4+g’(x),f’’(0)=-4<0,因为
所以存在δ>0,当0<|x|<δ时,
从而当x∈(-δ,0)时,f’’(x)>0,当x∈(0,δ)时,f’’(x)<0,选C.
转载请注明原文地址:https://www.kaotiyun.com/show/ZKX4777K
0
考研数学三
相关试题推荐
求极限,a>0.
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
设f(x)连续,f(0)=1,则曲线∫0xf(x)dx在(0,0)处的切线方程是__________.
设f(x)在[a,b]上二阶可导,且fˊ(a)=fˊ(b)=0.证明:∈(a,b).使
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设二维随机变量(X,Y)的概率密度为求:(1)方差D(XY);(2)协方差Cov(3X+Y,X-2Y).
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
设有k台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi,i=1,2,…,k,用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,…,Xk,设仪器都没有系统误差,即E(Xi)=θ,i=1,2,…,k,试求:a1,a2,…,ak应取何值,使用
设则B等于().
随机试题
国家安全、民族与宗教等行政事务是___________的重要内容。
行业集中度
Greatchanges______inthecity,andalotoffactories______.
简述传染病的主要传播途径与特点(至少说出三种传播途径)。
女生,30岁,无溃疡病史,因关节酸痛常服水杨酸制剂,6小时前突然大量呕血,血压100/70mmHg,心率120次/分.出血原因最可能是
临床上进行尸体护理的依据是
某新设立的建设公司将其组织系统设计为矩阵组织结构模式。在实际运行中发现,由于公司职能部门与项目部之间的指令发生矛盾,影响了这个组织系统的运行效率。公司对此宜选择的做法是( )。
如果子网掩码为255.255.192.0,那么下列哪一台主机地址必须通过路由器才能和129.23.144.16通信?()
小学现在实行一费制,但个别地区学校巧立名目,自行收费,令广大家长愤怒不已。请说明你对这件事的看法。
Agoodwaytogetinformationforessaysandreportsistointerviewpeoplewhoarcexpertsinyour【S1】______topicorwho
最新回复
(
0
)