首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x0处n阶可导,且f(m)(x0)=0(m-1,2,…,n-1),f(n)(x0)≠0(n≥2). 证明:(1)当n为偶数且f(n)(x0)<0时,f(x)在x0处取得极大值; (2)当n为偶数且f(n)(x0)>>0时,f(x)在x0处取得极
设f(x)在x0处n阶可导,且f(m)(x0)=0(m-1,2,…,n-1),f(n)(x0)≠0(n≥2). 证明:(1)当n为偶数且f(n)(x0)<0时,f(x)在x0处取得极大值; (2)当n为偶数且f(n)(x0)>>0时,f(x)在x0处取得极
admin
2016-09-13
58
问题
设f(x)在x
0
处n阶可导,且f
(m)
(x
0
)=0(m-1,2,…,n-1),f
(n)
(x
0
)≠0(n≥2).
证明:(1)当n为偶数且f
(n)
(x
0
)<0时,f(x)在x
0
处取得极大值;
(2)当n为偶数且f
(n)
(x
0
)>>0时,f(x)在x
0
处取得极小值.
选项
答案
n为偶数,令n=2k,构造极限 [*] 当f
(2k)
(x
0
)<0时,极限保号性=>[*]<0=>f(x)<f(x
0
),故x
0
为极大值点; 当f
(2k)
(x
0
)>0时,极限保号性=>[*]>0=>f(x)>f(x
0
),故x
0
为极小值点.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/oxT4777K
0
考研数学三
相关试题推荐
[*]
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
在利用古典概型计算概率时,选择正确的样本空间是关键.比如,考虑一个投掷两枚均匀硬币的试验,其样本空间可以有两种表示.(1)如果在试验中没有区分这两枚硬币,也许是因为这两枚硬币完全相同,并且将两枚硬币同时投掷;或者是因为我们观察投掷结果时并不关心哪
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
求下列函数的导数:(1)y=2x4-3/x2+5;(2)y=e2x+2x+7;(3)y=ln2x+2lgx;(4)y=3secx+cotx;(5)y=sinx·tanx;(6)y=x3lnx;(7)y=exsinx;
已知某曲线经过点(1,1),它的切线在纵轴上的截距等于切点的横坐标,求它的方程.
设f(x,y)=2x2+y2,求▽f(1,2),并用它来求等量线f(x,y)=6在点(1,2)处的切线方程.画出f(x,y)的等量线、切线与梯度向量的草图.
有一下凸曲线L位于xOy面的上半平面内,L上任一点M处的法线与x轴相交,其交点记为B,如果点M处的曲率半径始终等于线段MB之长,并且L在点(1,1)处的切线与y轴垂直,试求L的方程.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).利用(1)的结论计算定积分;
随机试题
X线胸片可以看到KerleyB线的疾病是
肾病综合征病人应用环磷酰胺最严重的不良反应是
A、利尿通淋,利湿退黄B、利湿去浊,祛风湿C、利尿通淋,杀虫止痒D、利尿通淋,清肺止咳E、利尿通淋,清热解暑萆薢的功效是
某国间谍戴某,结识了我某国家机关机要员黄某。戴某谎称来华投资建厂需了解政策动向,让黄某借工作之便为其搞到密级为“机密”的《内参报告》四份。戴某拿到文件后送给黄某一部手机,并为其子前往某国留学提供了六万元资金。对黄某的行为如何定罪处罚?
为了防止将杆塔基础掏空或垂直取土的现象发生,取土后所形成的坡面与地平线之间的夹角,一般不得大于()。
个人征信系统所收集的个人信用信息中的信用交易信息不包括()。
A股份有限公司(以下简称A公司)于1998年1月1日以货币资金投资2000万元,取得B公司60%的股权;有关资料如下。(1)1998年1月1日,B公司的股东权益为3000万元,其中股本为2000万元,资本公积为1000万元。根据投资合同的规定,A公司对B
在路由器互联的多个局域网中,通常要求每个局域网的()。
______sheisyoung,sheknowsquitealot.
Howmanytimeshaveyouheardtheexpressionthatmostpeoplespendmoretimeplanningtheirvacationthantheydoplanningthei
最新回复
(
0
)