首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线L的参数方程为x=φ(t)=t—sint,y=ψ(t)=1一cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕),轴旋转一周所成旋转体的体积V。
设曲线L的参数方程为x=φ(t)=t—sint,y=ψ(t)=1一cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕),轴旋转一周所成旋转体的体积V。
admin
2020-04-21
85
问题
设曲线L的参数方程为x=φ(t)=t—sint,y=ψ(t)=1一cost(0≤t≤2π)。
(Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域;
(Ⅱ)求曲线L与x轴所围图形绕),轴旋转一周所成旋转体的体积V。
选项
答案
(1)由已知可得 φ’(t)=1一cost≥0,φ(0)=0,φ(2π)=2π, 则φ(t)在[0,2π]上单调增加,且值域为[φ(0),φ(2π)]=[0,2π]。 由x=φ(t)=t—sint在[0,2π]上连续可知其在[0,2π]上存在连续的反函数t=φ
—1
(x),且定义域为[0,2π]。所以y(x)=ψ[φ
—1
(x)]在[0,2π]上连续。 (Ⅱ)由旋转体的体积公式(绕y轴旋转),有 V=2π∫
0
2π
xydx=2π∫
0
2π
(t一sint)(1一cost)
2
dt=2π∫
0
2π
t(1一cost)
2
dt, 令t=2w—s,则 V=2π∫
0
2π
(2π—s)(1一coss)
2
ds=4π
2
∫
0
2π
(1一coss)
2
ds—V, [*] 上式中,∫
0
2π
sint(1一cost)
2
dt=∫
—π
π
sint(1一cost)
2
dt=0由周期函数与奇函数的积分性质直接得出。 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Z684777K
0
考研数学二
相关试题推荐
[20l1年]设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,l,1,]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关.问:α1能否由α2,α3线性表示?证明你的结论.
[2007年]设线性方程组①与方程(Ⅱ):x1+2x2+x3=a一1,②有公共解.求a的值与所有公共解.
[2003年]已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
[2000年]设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=().
求极限ω=.
求极限:a>0.
若极限,则函数f(x)在x=a处
随机试题
A、ACustomsofficer.B、AnImmigrationandNaturalizationDepartmentofficer.C、AnArmyofficer.D、Avisaofficer.B对话中谈到护照、延期等情况
尿中对黄疸有鉴别意义的物质为
在下列合同文件中,()具有优先的解释效力。
行为治疗一般包括5个步骤,以下哪项不属于行为治疗的5个步骤之中?()
教师提高研究技能的三种途径是()。
假如你被录用后分配到某处室工作,这个处只有处长、副处长和你三个人。正副处长因为种种原因矛盾很深。你上班后,副处长对你非常热情,经常和你聊天,请你吃饭。请问遇到这种情况你如何处理?
时光,在回首瞻望中兜兜转转,几十年光阴犹如昼夜般消逝,匆匆的时光流逝,在深夜总会辗转无眠,是________流年里的故事,还是在________岁月里稍纵即逝的风景,明明只是________,心却在不觉间已沧桑。填入画横线部分最恰当的一项是:
平反是指对处理错误的案件进行纠正。根据上述定义,下列哪项最为准确地说明了上述定义的不严格?
ErnestHemingwaywasoneofthemostimportantAmericanwritersinthehistoryofcontemporaryAmericanliterature.Hewasthe【C
AstheworldexcitedlygreetedSnuppy,thefirstcloned(克隆)dog,commentatorscelebratedourcleverness.Manyfeelproudthatour
最新回复
(
0
)