首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2000年] 设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=( ).
[2000年] 设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=( ).
admin
2019-05-10
62
问题
[2000年] 设α
1
,α
2
,α
3
是四元非齐次线性方程组AX=b的三个解向量,且秩(A)=3,α
1
=[1,2,3,4]
T
,α
2
+α
3
=[0,1,2,3]
T
,c表示任意常数,则线性方程组AX=b的通解X=( ).
选项
A、[1,2,3,4]
T
+c[1,1,1,1]
T
B、[1,2,3,4]
T
+c[0,1,2,3]
T
C、[1,2,3,4]
T
+c[2,3,4,5]
T
D、[1,2,3,4]
T
+c[3,4,5,6]
T
答案
C
解析
关键在于构造出AX=0的一个非零特解,求得其基础解系.构造的方法需利用命题2.4.4.1.
解一 仅(C)入选.AX=b为四元非齐次方程组,秩(A)=3,AX=0的一个基础解系只含n一秩(A)=4—3=1个解向量.将特解的线性组合2α
1
,α
2
+α
3
写成特解之差的线性组合:
2α
1
一(α
2
+α
3
)=(α
1
一α
2
)+(α
1
一α
3
).
因2一(1+1)=0,由命题2.4.4.1知,2α
1
一(α
2
+α
3
)=[2,3,4,5]
T
≠0仍为AX=0的一个解向量,且为其一个基础解系,故AX=b的通解为
X=α
1
+c[2α
1
一(α
2
+α
3
)]=[1,2,3,4]
T
+c[2,3,4,5]
T
, c为任意常数.
解二 仅(C)入选.因秩(A)=3,故四元齐次方程组AX=0的基础解系所含向量的个数为4一秩(A)=1,所以AX=0的任一个非零解都是它的基础解系.由于α
1
及(α
2
+α
3
)/2都是AX=b的解(因1/2+1/2=1),故
α
1
一(α
3
+α
2
)/2=(1/2)[2α
1
一(α
2
+α
3
)]=(1/2)[2,3,4,5]
T
是AX=0的一个解,从而2×(1/2)[2,3,4,5]
T
=[2,3,4,5]
T
=η,也是AX=0的一个解,且因η≠0,故η为AX=0的一个基础解系,所以AX=b的通解为
X=α
1
+cη=[1,2,3,4]
T
+c[2,3,4,5]
T
, 其中C为任意常数.
转载请注明原文地址:https://www.kaotiyun.com/show/VVV4777K
0
考研数学二
相关试题推荐
设f(χ),g(χ)为[a,b]上连续的增函数(0<a<b),证明:∫abf(χ)dχ∫abg(χ)dχ≤(b-a)∫abf(χ)g(χ)dχ.
考虑二次型f=χ12+4χ22+4χ32+2λχ1χ2-2χ1χ3+4χ2χ3,问λ取何值时,f为正定二次型?
设y=y(χ)由χ2y2+y=1(y>0)确定,求函数y=y(χ)的极值.
求微分方程yy〞=y′2满足初始条件y(0)=y′(0)=1的特解.
求微分方程χy=χ2+y2满足初始条件y(e)=2e的特解.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设f(u)具有连续的一阶导数,且当x>0,y>0时,,求z的表达式.
设f(x,y)具有二阶连续偏导数,证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(a)是极大值
[2017年]设二阶可导函数f(x)满足f(1)=f(一1)=1,f(0)=一1,且f"(x)>0,则()
[2018年]设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则().
随机试题
潜意识
A.产生光子,平均能量0.83MeV,半衰期1590年B.产生光子,平均能量1.25MeV,半衰期5.27年C.产生光子,平均能量0.36MeV,半衰期74.2天D.产生电子,平均能量2.28MeV,半衰期28.1年E.产生中子,平均能量2.35M
A.痰浊结聚B.肺肾两虚C.肺胃热盛D.肝郁气滞E.气血两虚
丹毒的主要病因病机是( )。
下列不属于排水管道系统上的附属构筑物的是( )。
我国社会主义初级阶段的一项基本经济制度是()。
下列社会组织不是法人的是()。
在深化干部人事制度改革、培养和选拔干部的时候,必须坚持的用人标准是( )。
进入21世纪,中国的媒体事件频发。媒体对事件的关注程度和方式决定了公众的态度和事件的发展。人们所看到的已经不是事件本身,而是经过媒体把关后的媒体事件。随着网络的兴起,媒体事件更是集中地以网络事件的形式表现。在网络事件中,网民是网络舆论和网络监督主体。他们的
Whendoyouthinkthisconversationtookplace?
最新回复
(
0
)