首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx,其中二次型矩阵A的主对角元素的和为3。AB=O,其中 (Ⅰ)用正交变换化二次型为标准形,并求所做的正交变换; (Ⅱ)求该二次型的具体表达式。
设二次型f(x1,x2,x3)=xTAx,其中二次型矩阵A的主对角元素的和为3。AB=O,其中 (Ⅰ)用正交变换化二次型为标准形,并求所做的正交变换; (Ⅱ)求该二次型的具体表达式。
admin
2019-01-25
69
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax,其中二次型矩阵A的主对角元素的和为3。AB=O,其中
(Ⅰ)用正交变换化二次型为标准形,并求所做的正交变换;
(Ⅱ)求该二次型的具体表达式。
选项
答案
根据已知条件[*],因此矩阵B的3个列向量均为A的对应于特征值A=0的特征向量,其中 β
1
=(1,2,1)
T
,β
2
=(-2,1,0),2β-β=(4,3,2)
T
, 故λ=0至少为矩阵A的二重特征值。 根据A的主对角元素的和为3可得A还有一个特征值为3,因此属于矩阵A的特征值分别为0,0,3。矩阵A是一个实对称矩阵,因此属于特征值3的特征向量与属于特征值0的两个特征向量均正交,可得方程组[*]解得β
3
=(x
1
,x
2
,x
3
)
T
=(1,2,-5)
T
。 故存在正交变换x=Qy,其中 [*]
解析
本题考查化二次型为标准形。第一问通过矩阵方程及主对角线元素的和可得出矩阵A的特征值,利用属于不同特征值的特征向量正交的性质求出A的所有特征向量,从而得出正交矩阵。第二问利用第一问的逆向变化计算矩阵的乘积即可得出矩阵A的具体形式。
转载请注明原文地址:https://www.kaotiyun.com/show/YhP4777K
0
考研数学三
相关试题推荐
求解微分方程(y—x2)y’=x.
已知级数.
设f(x)为连续的偶函数,F(x)为f(x)的原函数,且∫—11F(x)dx=0,求F(x).
设随机变量X的分布函数为F(x)=.
设u=f(x,y)为可微函数.(1)若u=f(x,y)满足方程=0,试证:f(x,y)在极坐标系中只是θ的函数,而与r无关.(2)若u=f(x,y)满足方程=0,试证:f(x,y)在极坐标系中只是r的函数,而与θ无关.
设不恒为常数的函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(c)=f(b).其中c为(a,b)内的一点,试证:存在点ξ∈(a,b),使得f"(ξ)
设矩阵A=,已知齐次线性方程组Ax=0的解空间的维数为2,求a的值并求出方程组Ax=0的用基础解系表示的通解.
设函数f(x)在x=1的某邻域内连续,且有(Ⅰ)求f(1)及(Ⅱ)求f’(1),若又设f"(1)存在,求f"(1).
随机试题
乙型病毒性肝炎产妇的新生儿最好的免疫方法为
患者孕5个月,尿少色深黄,艰涩而痛,面赤心烦,口舌生疮。舌红少苔,脉细滑数。治疗方剂是
属于客观方面的健康资料是
征信异议的处理方法错误的是()。
资料一:甲公司正在开会讨论是否投产一种新产品,对以下收支是否列入项目相关现金流量发生争论:A.新产品投产需要占用营运资金80万元,它们可在公司现有周转资金中解决,不需要额外筹集;B.该项目利用现有未充分利用的厂房和设备,如将该设备出租可获收益200万
下列金融市场类型中,能够为企业提供中长期资金来源的有()。
公告是向国内外发布重要事项和法定事项的公文,地方行政机关、党团组织、社会团体、企事业单位,一般不能发布公告。()
下列情形中,诉讼时效为1年的是()。
经常研究犯罪分子的活动规律,防范刑事犯罪活动属于()的一项职责。
《呐喊》是伟大文学家鲁迅先生的著名小说集,下列哪一项并不是出自《呐喊》的文学作品?()
最新回复
(
0
)