首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2. (Ⅰ)求a的值; (Ⅱ)求正交变换χ=Oy,把f(χ1,χ2,χ3)化成标准形; (Ⅲ)求方程f(χ1,χ2,χ3)=0
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2. (Ⅰ)求a的值; (Ⅱ)求正交变换χ=Oy,把f(χ1,χ2,χ3)化成标准形; (Ⅲ)求方程f(χ1,χ2,χ3)=0
admin
2017-06-26
57
问题
已知二次型f(χ
1
,χ
2
,χ
3
)=(1-a)χ
1
2
+(1-a)χ
2
2
+2χ
3
2
+2(1+a)χ
1
χ
2
的秩为2.
(Ⅰ)求a的值;
(Ⅱ)求正交变换χ=Oy,把f(χ
1
,χ
2
,χ
3
)化成标准形;
(Ⅲ)求方程f(χ
1
,χ
2
,χ
3
)=0的解.
选项
答案
(Ⅰ)由于二次型f的秩为2,即对应的矩阵A=[*]的秩为2, 所以有[*]=-4a=0,得a=0. (Ⅱ)当a=0时,A=[*],计算可得A的特征值为λ
1
=λ
2
=2,λ
3
=0.解齐次线性方程组(2E-A)χ=0,得A的属于λ
1
=2的线性无关的特征向量为 η
1
=(1,1,0)
T
,η
2
=(0,0,1)
T
解齐次线性方程组(0E-A)χ=0,得A的属于λ
3
=0的线性无关的特征向量为 η
3
=(-1,1,0)
T
易见η
1
,η
2
,η
3
两两正交.将η
1
,η
2
,η
3
单位化得A的标准正交的特征向量为 e
1
=[*](1,1,0)
T
,e
2
=(0,0,1)
T
,e
3
=[*](-1,1,0)
T
取Q=(e
1
,e
2
,e
3
),则Q为正交矩阵. 令X=Qy,得f的标准形为 f(χ
1
,χ
2
,χ
3
)=λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
=2y
1
2
+2y
2
2
(Ⅲ)在正交变换X=Qy下,f(χ
1
,χ
2
,χ
3
)=0化成2y
1
2
+2y
2
2
=0,解之得y
1
=y
2
=0,从而 χ=[*]=y
3
e
3
=k(-1,1,0)
T
,其中k为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/YVH4777K
0
考研数学三
相关试题推荐
设周期函数f(x)在(-∞,+∞)内可导,周期为4.又,则曲线y=f(x)在点(5,f(5))处的切线的斜率为().
设每天生产某种商品g单位时的固定成本为20元,边际成本函数C’(q)=0.4g+2元/件.求成本函数C(g).如果该商品的销售价为18元/件,并且所有产品都能够售出,求利润函数L(q),并问每天生产多少件产品时才能获得最大利润?
若3a2-5b<0,则方程x5+2ax3+3bx+4c=0().
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是().
已知f(x)是微分方程xf’(x)-f(x)=满足f(1)=0的特解,则∫01f(x)dx=_________.
设函数f(x)在[0,1]上连续,(0,1)内可导,且3∫2/31f(x)dx=f(x),证明在(0,1)内存在一点,使f’(C)=0.
设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y与Z的相关系数为__________.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:BTB是正定矩阵.
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中用正交变换化二次型xTAx标准形,并写出所用正交变换;
利用曲线积分计算柱面x2/5+y2=1位于y≥0,z≥0的部分被平面y=z所截一块的面积.
随机试题
下列属于建设期现金流量的有()。
在“教师档案”表中使用OLE对象字段存放照片,在使用向导为该表创建窗体时,“照片”字段所使用的控件是()。
全面质量管理的核心内涵是强调入的工作质量,从而保证和提高产品质量,达到和提高企业和全社会经济效益的目标。()
(2005年第94题)下列CT影像中,最支持胰腺癌诊断的是
急性腹膜炎最主要的症状是
当室内热水供应管道长度超过40m时,补偿器形式一般应设置为()。
非营利组织从事营利性活动取得的收入,免征企业所得税。()
公安执法监督是国家的一种法律制度,其形式通常表现为依法进行的、可以产生某种法律效力和法律后果的法律行为。( )
西周建立后,分封同姓贵族和异姓贵族及归顺的异族首领到各地区,建立国家以藩屏护卫周室,分别封在卫、鲁、唐、燕的贵族是()。
Toitsfans,itisaddictive.Tothemedia,itisapromisingmoney-maker.Sudoku,anoldpuzzlelongpopularinJapanisfastg
最新回复
(
0
)