首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的( ).
设α1,α2,α3为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的( ).
admin
2020-09-25
78
问题
设α
1
,α
2
,α
3
为3维向量,则对任意常数k,l,向量组α
1
+kα
3
,α
2
+lα
3
线性无关是向量组α
1
,α
2
,α
3
线性无关的( ).
选项
A、必要非充分条件
B、充分非必要条件
C、充分必要条件
D、既非充分也非必要条件
答案
A
解析
已知α
1
,α
2
,α
3
无关,设λ
1
(α
1
+kα
3
)+λ
2
(α
2
+lα
3
)=0,
即λ
1
α
1
+λ
2
α
2
+(kλ
1
+lλ
2
)α
3
=0
λ
1
=λ
2
=kλ
1
+lλ
2
=0,
从而可知α
1
+kα
3
,α
2
+lα
3
无关.
反之,若α
1
+kα
3
,α
2
+lα
3
无关,不一定有α
1
,α
2
,α
3
无关.
转载请注明原文地址:https://www.kaotiyun.com/show/YJx4777K
0
考研数学三
相关试题推荐
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
设A=,B是3阶非零矩阵,且AB=O,则a=________
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
(95年)已知随机变量(X,Y)的联合概率密度为求(X,Y)的联合分布函数.
袋中有1个红球、2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.
(02年)求极限
(2002年)设D1是由抛物线y=2x2和x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2。(I)试求D1绕x轴旋转而成的旋转体体积V1;D2绕y轴旋转而成的旋转体积V2;
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3]如果|A|=1,那么|B|=__________.
求极限=_______.
随机试题
常规高温热疗的温度范围大致为
羊毛脂做软膏基质时,有许多特点,除了
城市某单位干部区礼华退休后在郊区的老家建了一处宅院,在那里安度晚年。后来区礼华于2003年2月病逝,所建宅院由他的三个儿子区绍宽、区绍厚、区绍富继承。三兄弟在市区都有住房,就商量把郊区的宅院卖掉,龙家兄弟龙甲和龙乙愿意购买此房。于是,区家三兄弟与龙家两兄弟
在项目评估阶段,银行应着重对几种主要的或关键的原辅料的供给条件进行分析评价,评价的主要内容包括()。
【大跃进运动】辽宁大学2014年历史学专业基础真题
简述影响问题解决的心理因素。(西南大学2019年研;华东帅范大学2013研;西南大学2012研)
设F(u,v)可微,y=y(x)由方程所确定,其中f(x)是连续函数且满足关系式,又f(1)=1,求:
有如下赋值语句,结果为"大家好"的表达式是()。a="你好"b="大家"
Thomasaskedthathe______allowedtotakethecoursethissemester.
A、Stayandnegotiateormove.B、MoveclosertotheUniversityornearthesubway.C、Fightforasmallincreaseoracceptsaninc
最新回复
(
0
)