首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的( ).
设α1,α2,α3为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的( ).
admin
2020-09-25
79
问题
设α
1
,α
2
,α
3
为3维向量,则对任意常数k,l,向量组α
1
+kα
3
,α
2
+lα
3
线性无关是向量组α
1
,α
2
,α
3
线性无关的( ).
选项
A、必要非充分条件
B、充分非必要条件
C、充分必要条件
D、既非充分也非必要条件
答案
A
解析
已知α
1
,α
2
,α
3
无关,设λ
1
(α
1
+kα
3
)+λ
2
(α
2
+lα
3
)=0,
即λ
1
α
1
+λ
2
α
2
+(kλ
1
+lλ
2
)α
3
=0
λ
1
=λ
2
=kλ
1
+lλ
2
=0,
从而可知α
1
+kα
3
,α
2
+lα
3
无关.
反之,若α
1
+kα
3
,α
2
+lα
3
无关,不一定有α
1
,α
2
,α
3
无关.
转载请注明原文地址:https://www.kaotiyun.com/show/YJx4777K
0
考研数学三
相关试题推荐
曲线y=x2与直线y=x+2所围成的平面图形面积为________.
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
(15年)设随机变量X的概率密度为对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y为观测次数.(Ⅰ)求Y的概率分布;(Ⅱ)求EY.
(11年)设函数f(χ)在区间[0,1]上具有连续导数,f(0)=1,且满足f′(χ+y)dχdy=f(t)dχdy,其中Dt={(χ,y)|0≤y≤t-χ,0≤χ≤t)(0<t≤1).求f(χ)表达式.
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1。试证必存在ξ∈(0,3),使f’(ξ)=0。
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
(2002年)设D1是由抛物线y=2x2和x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2。(I)试求D1绕x轴旋转而成的旋转体体积V1;D2绕y轴旋转而成的旋转体积V2;
二元函数f(x,y)在点(x0,y0)处两个偏导数fx’(x0,y0),f(x0,y0)存在是f(x,y)在该点连续的().
[2011年]曲线tan(x+y+π/4)=ey在点(0,0)处的切线方程为___________.
随机试题
肺胀病名首见于:
桂枝汤原方服法要求"服已须臾,吸热稀粥一升余",其意义在于
平原河网地区的城市用地工程适宜性评定重点是()
下列关于敏感性训练目的的表述,错误的是( )。
甲公司2015年年初的递延所得税资产借方余额为50万元,与之对应的预计负债贷方余额为200万元;递延所得税负债无期初余额。甲公司2015年度实现的利润总额为9520万元,适用的企业所得税税率为25%且预计在未来期间保持不变;预计未来期间能够产生足够的应纳税
根据保险法律制度的规定,投保人在订立保险合同时故意或因重大过失未履行如实告知义务,足以影响保险人决定是否同意承保或提高保险费率的,保险人有权解除合同,保险人解除合同的权利,自保险人知道有解除事由之日起超过一定期限不行使而消灭,该期限为()。
衡量计算机的主要性能指标除了字长、存取周期、运算速度之外,通常还包括(8),因为其反映了(9)。(8)
Whatdoesthespeakersuggestthatthestudentsshoulddoduringtheterm?
Thefinalproposalswerearatherunsuccessful______betweentheneedforprofitabilityandthedemandsoflocalconservationis
—Howareyoudoingsinceyouquityourteachingjob?—______Iworkoutdoorsnow,asagardener.Themoneyisnotsogood,butI
最新回复
(
0
)