首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有 |f(χ)-f(y)|≤M|χ-y|k. (1)证明:当k>0时,f(χ)在[a,b]上连续; (2)证明:当k>1时,f(χ)≡常数.
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有 |f(χ)-f(y)|≤M|χ-y|k. (1)证明:当k>0时,f(χ)在[a,b]上连续; (2)证明:当k>1时,f(χ)≡常数.
admin
2019-08-23
94
问题
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有
|f(χ)-f(y)|≤M|χ-y|
k
.
(1)证明:当k>0时,f(χ)在[a,b]上连续;
(2)证明:当k>1时,f(χ)≡常数.
选项
答案
(1)对任意的χ
0
∈[a,b],由已知条件得 0≤|f(χ)-f(χ
0
)|≤M|χ-χ
0
|
k
,[*]f(χ)=f(χ
0
), 再由χ
0
的任意性得f(χ)在[a,b]上连续. (2)对任意的χ
0
∈[a,b],因为k>1, 所以0≤[*]≤M|χ-χ
0
|
k-1
,由夹逼定理得f′(χ
0
)=0,因为χ
0
是任意一点,所以f′(χ)≡0,故f(χ)≡常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/YIA4777K
0
考研数学二
相关试题推荐
已知2CA一2AB=C—B,其中则C3=______。
设z=f(x+y,x一y,xy),其中f具有二阶连续偏导数,求dz与
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意的x∈(一∞,+∞),f’(x)都存在,并求f(x)。
设y=f(x)是区间[0,1]上的任一非负连续函数。试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
设函数y=y(x)由方程ylny一x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性。
向量组α1=(1,一2,0,3)T,α2=(2,一5,一3,6)T,α3=(0,1,3,0)T,α4=(2,一1,4,7)T的一个极大线性无关组是______。
已知一个长方形的长l以2cm/s的速率增加,宽加以3cm/s的速率增加。则当l=12cm,w=5cm时,它的对角线增加速率为______。
设ξ0=(1,-1,1,-1)T是线性方程组的一个解向量,试求:(I)方程组(*)的全部解;(Ⅱ)方程组(*)的解中满足x2=x3的全部解.
设,其中f,g均可微,则=_______.
将f(χ,y)dχdy化为累次积分,其中D为χ2+y2≤2aχ与χ2+y2≤2ay,的公共部分(a>0).
随机试题
在Windows操作系统中,______。
A、制备膜剂B、制备脂质体C、制备溶蚀性骨架片D、制各不溶性骨架片E、片剂包薄膜衣聚乙烯醇可用于
A、自牙颈部牙骨质向牙冠方向散开,止于游离龈和附着龈固有层的牙龈纤维称B、自牙槽嵴向牙冠方向展开,穿过固有层止于游离龈和附着龈固有层的牙龈纤维称C、位于牙颈周同的游离龈中,呈环形排列的牙龈纤维称D、自牙颈部的牙骨质,越过牙槽突外侧皮质骨骨膜,进入牙槽
某工程监理公司承担施工阶段监理任务,建设单位采用公开招标方式选择承包单位。在招标文件中对省内与省外投标人提出了不同的资格要求,并规定2008年10月30日为投标截止时间。甲、乙等多家承包单位参加投标,乙承包单位11月5日方提交投标保证金,11月3日由招
证券公司与客户之间的(),委托中国结算公司根据成交记录按照业务规则代为办理。
政府预算的基本特征包括()。
新房在装修后,有一股难闻的气味弥漫整个屋子,对人体是有害的。所以有人提出在装修完的新房里点蜡烛以吸收这些有毒的气体,但事实上这一做法对消除该难闻气味毫无作用。装修后新房里难闻的有毒气体主要是由装修材料中的()成分挥发出来的。
下列属于5—6岁幼儿特征的是()。
在当代中国,坚持发展是硬道理的本质要求就是坚持()。
Nullandvoid
最新回复
(
0
)