首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(03年)已知齐次线性方程组 其中≠0.试讨论a1,a2,…,an和b满足何种关系时, (1)方程组仅有零解; (2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
(03年)已知齐次线性方程组 其中≠0.试讨论a1,a2,…,an和b满足何种关系时, (1)方程组仅有零解; (2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
admin
2021-01-25
142
问题
(03年)已知齐次线性方程组
其中
≠0.试讨论a
1
,a
2
,…,a
n
和b满足何种关系时,
(1)方程组仅有零解;
(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
选项
答案
方程组的系数行列式 [*] 为一“行和”相等行列式,将各列加至第1列,然后提取第1列的公因子(b+[*]a
i
),再将第1列的(-a
i
)倍加至第i列(i=2,…,n),就将行列式化成了下三角行列式: [*] (1)当|A|≠0,即b≠0且b+[*]≠0时,方程组仅有零解; (2)当b=0时,原方程组的同解方程组为 a
1
χ
1
+a
2
χ
2
+…+a
n
χ
n
=0, 由[*]≠0知a
1
,a
2
,…,a
n
不全为零,不妨设a
1
≠0,则得原方程组的用自由未知量表示的通解为 [*] 由此得方程组的一个基础解系为 [*] 当b=-[*]时,有b≠0,对原方程组的系数矩阵A作初等行变换:将第1行的(-1)倍分别加至第2,3,…,n行,得 [*] 用[*]乘第i行(i=2,3,…,n),得 [*] 将第i行的(-a
i
)倍加至第1行(i=2,3,…,n),并利用b+[*]=0,得 [*] 因此得原方程组的用自由未知量表示的通解为 χ
2
=χ
1
,χ
3
=χ
1
,…,χ
n
=χ
1
,(χ
1
任意) 令χ
1
=1,则得原方程组的一个基础解系为 α=(1,1,…,1)
T
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Xqx4777K
0
考研数学三
相关试题推荐
设f(x)为连续函数,且F(x)=,则F’(x)=________.
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
设函数f(x,y)可微,且f(1,1)=1,f’x(1,1)=a,f’y(1,1)=b。又记φ(x)=f{x,f[x,f(x,x)]},则φ1(1)=_____________________。
已知微分方程作变换μ=x2+y2,ω=lnz-(x+y)确定函数ω=ω(μ,ν),求经过变换后原方程化成的关于ω,μ,ν的微分方程的形式.
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得
设总体X~N(0,1),X1,X2,X3,X4为来自总体的简单随机样本,则服从的分布为.
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P1=(α1-α3,α2+α3,α3),则P1﹣1A*P1=().
计算积分dxdy,其中D是第一象限中以曲线y=与x轴为边界的无界区域.
的渐近线的条数为().
设y=y(x)是二阶常系数微分方程y’’+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
随机试题
阐述公共选择理论关于政府失灵原因的分析。
中药的性能主要包括
五皮饮合胃苓汤治疗水肿的证候是( )
关于MR尿路造影技术,叙述错误的是
患者,男,32岁。因甲状腺占位行甲状腺次全切除术,手术顺利,术后麻醉复苏后返回病房,术后第2天出现声音嘶哑和手足抽搐等症状。患者术后症状应考虑
带下量多,色黄绿如脓,有臭气,阴部痒痛,烦躁易怒。多属于
能杀伤细胞的细胞因子是
下列选项中的现象包含了相同物理原理的是:
复审与改判【案情史料】“士五(伍)甲盗,以得时直(值)臧(赃),臧(赃)直(值)过六百六十,吏弗直(值),其狱鞠乃直(值)臧(赃),臧(赃)直(值)百一十,以论耐,问甲及吏可(何)论?甲当黥为城旦;吏为失刑罪,或端为,为不直。”(《法律答问》)试结合
Couldyoumakeher________laughing?
最新回复
(
0
)