首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是( )。
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是( )。
admin
2018-12-19
59
问题
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是( )。
选项
A、f’’(0)<0,g’’(0)>0。
B、f’’(0)<0,g’’(0)<0。
C、f’’(0)>0,g’’(0)>0。
D、f’’(0)>0,g’’(0)<0。
答案
A
解析
由z=f(x)g(y),得
而且
f(0)>0,g(0)<0。
当f’’(0)<0,g’’(0)>0时,B
2
一AC<0,且A>0,此时z=f(x)g(y)在点(0,0)处取得极小值。故选A。[img][/img]
转载请注明原文地址:https://www.kaotiyun.com/show/Xkj4777K
0
考研数学二
相关试题推荐
设D为不等式0≤x≤3,0≤y≤1所确定的区域,则=____________.
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=连接而成(如图3—7).求容器的容积;
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且证明存在ξ∈(0,3),使f’’(ξ)=0.
设A为三阶实对称矩阵,且存在正交矩阵Q=,使得QTAQ=,又令B=A2+2E,求矩阵B.
(2001年)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
(2007年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5=4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α是矩阵B的特征向量,并求B的全部特征值与特征向量;
特征根为r1=0,r2,3=±i的特征方程所对应的三阶常系数线性齐次微分方程为____________.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.(1)求A的特征值和特征向量;(2)求可逆矩阵P,使得P一1AP=A.
随机试题
丘溶认为_______是国家政治制度和法律的核心()
tariff
计算机可以直接执行的程序是以()语言所写成的程序。
Burkitt淋巴瘤的特点
下列选项中,属于急性普通型肝炎具有相对特征性的肝细胞病变是
根据病因及发病机制贫血可分为
地震区木结构柱的竖向连接.正确的是:
台风是中心风力达()级以上的风。
苏联在哪次会议上通过了社会主义工业化方针,并在此之后开始了大规模的工业化建设?()。
假定一个表单里有一个文本框Text1和一个命令按钮组CommandGroup1。命令按钮组是一个容器对象,其中包含Command1和Command2两个命令按钮。如果要在Command1命令按钮的某个方法中访问文本框的Value属性值,正确的表达式是(
最新回复
(
0
)