首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为四阶实对称矩阵,且A2+2A-3E=O,若r(A-E)=1,则二次型xTAx在正交变换下的标准形为( )
设A为四阶实对称矩阵,且A2+2A-3E=O,若r(A-E)=1,则二次型xTAx在正交变换下的标准形为( )
admin
2019-06-04
52
问题
设A为四阶实对称矩阵,且A
2
+2A-3E=O,若r(A-E)=1,则二次型x
T
Ax在正交变换下的标准形为( )
选项
A、y
1
2
+y
2
2
+y
3
2
-y
4
2
。
B、y
1
2
+y
2
2
+y
3
2
-3y
4
2
。
C、y
1
2
-3y
2
2
-3y
3
2
-3y
4
2
。
D、y
1
2
+y
2
2
-3y
3
2
-3y
4
2
。
答案
B
解析
由A
2
+2A-3E=O有(A-E)(A+3E)=O,从而
r(A-E)+r(A+3E)≤4。
又因为r(A-E)+r(A+3E)=r(E-A)+r(A+3E)
≥r[(E-A)+(A+3E)]
=r(4E)=4,
所以r(A-E)+r(A+3E)=4,则r(A+3E)=3。
于是齐次线性方程组(A-E)x=0与(A+3E)x=0分别有三个和一个线性无关的解,即λ=1与λ=-3分别是矩阵A的三重和一重特征值。故选B。
转载请注明原文地址:https://www.kaotiyun.com/show/XLc4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,满足AAT=I(I是n阶单位阵,AT是A的转置矩阵),|A|<0,求|A+I|.
设B为3阶非零矩阵,且AB=O,则t=________.
设有三张不同平面的方程ai1x+ai2y+ai3z=bi,i=1.2.3.它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T、是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设A为m阶实对称阵且正定,B为m×n实矩阵,BT为B的转置矩阵.试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
若矩阵A=相似于对角矩阵,试确定常数a的值;并求可逆矩阵P使P—1AP=A.
若f’(x)=sinx,则f(x)的原函数之一是
函数f(x,y)=x2y3在点(2,1)沿方向l=i+j的方向导数为
当掷一枚均匀硬币时,问至少应掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.97试用切比雪夫不等式和中心极限定理来分别求解.
两家影院竞争1000名观众,每位观众随机地选择影院且互不影响.试用中心极限定理近似计算:每家影院最少应设多少个座位才能保证“因缺少座位而使观众离去”的概率不超过1%?(Ф(2.328)=0.9900)
随机试题
在拧紧()布置的成组螺母时,必须对称地进行。
可用于治疗盗汗的方剂有()。
确诊溃疡活动性出血的最可靠方法是
根据《政府核准投资项目管理办法》,下列情形中,核准机关不予核准项目的是()。
民用建筑工程根据控制室内环境污染的不同要求,划分为以下两类,Ⅰ类民用建筑工程主要包括()等民用建筑工程。
案例四[背景材料]某房屋建筑工程项目,建设单位与施工单位按照《建设工程施工合同(示范文本)》签订了施工承包合同。施工合同中规定:(1)设备由建设单位采购,施工单位安装;(2)建设单位原因导致的施工单位人员窝工,按18元/工日
实现我国体育目的与目标的基本途径不包括()。
TypesofLanguageTestingI.Placement—sortnewstudentsinto【B1】______【B1】______—testthestudent’s【B2】______
A、Becausewemightbeofferedadishofinsects.B、Becausenothingbutfreshlycookedinsectsareserved.C、Becausesomeyuppies
It’sofficialthatmarriedpeoplearehealthier,oratleasttheythinktheyare.AnAmerican【B1】______ofover100,000peoplesh
最新回复
(
0
)