首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得 abeη-ξ=η2[f(η)一f’(η)].
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得 abeη-ξ=η2[f(η)一f’(η)].
admin
2021-01-12
67
问题
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得 abe
η-ξ
=η
2
[f(η)一f’(η)].
选项
答案
令ψ(x)=e
-x
f(x),F(x)=[*],由柯西中值定理,存在η∈(a,b), 使得[*] 整理得[*] 由微分中值定理,存在ξ∈(a,b),使得[*] 所以abe
η-ξ
=η
2
[f(η)一f’(η)].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/XJ84777K
0
考研数学二
相关试题推荐
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解.(I)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0
讨论曲线y=4lnx+k与y=4x+ln4x的交点个数。
[2018年]设数列{xn}满足:x1>0,xnexn+1=exn一1(n=1,2,…).证明{xn}收敛,并求xn.
已知函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex。求f(x)的表达式;
求微分方程xdy+(x一2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成平面图形绕x轴旋转一周的旋转体体积最小.
(13年)设奇函数f(x)在[-1,1]上具有2阶导数,且f(1)=1.证明:(I)存在ξ∈(0,1),使得f’(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f/"(η)+f’(η)=1.
设位于第一象限的曲线y=f(x)过点(,1/2),其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分。求曲线y=f(x)的方程;
(2014年)证明n阶矩阵相似.
随机试题
患者高热烦渴,脉细数而疾,汗出如流油,热而黏手,常见于
药物以分子状态分散于液体分散媒中难溶性固体药物分散于液体分散媒中
关于乳牙牙龈瘘道的描述,以下正确的是
建设工程项目中,()的工程项目承包风险较大,各项费用不易准确估算,因而不宜采用固定总价合同。
预警评价指标体系系统主要是完成指标的()。
人员密集场所、易燃易爆化学物品场所、重要场所存在重大火灾隐患判定要素中任意()条以上,判定为重大火灾隐患。
企业提取盈余公积的主要目的是为了防范企业经营风险等的需要。()
券商资产管理计划的产品流动性和收益与投资标的和交易结构无关。()
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
RalphEllisonwaspassionatelyinterestedinthevisualarts.HeimmersedhimselfinHarlem’sartsceneinthe1930s,evenappre
最新回复
(
0
)