首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
admin
2018-04-14
112
问题
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
选项
答案
设切点坐标为A(x
0
,lnx
0
),斜率为1/x
0
,所以设切线方程为 y-lnx
0
=1/x
0
(x-x
0
), 又因为该切线过(0,1),所以x
0
=e
2
,故切线方程为y=1/x
2
x+1。 L与x轴交点为B(1,0),直线AB的方程为y=[*](x-1)。 区域D的面积为 [*] =e
2
+1-(e
2
-1)=2。 旋转一周所围成的体积为 V=V
1
-V
2
[*] =(2e
2
-2)π-[*]π=2/3(e
2
-1)π。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/XCk4777K
0
考研数学二
相关试题推荐
交换二次积分的积分次序:
微分方程y"+y=x2+1+sinx的特解形式可设为
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
因为y=ex在实数域内严格单调增加,又在区间[-2,-1]上1≤-x3≤8,-8≤x3≤-1,所以在区间[-2,-1]上e≤e-x3≤e8,e-8≤ex3≤e-1<e,由定积分的性质知[*]
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设平面区域D:1≤x2+y2≤9,f(x,y)是区域D上的连续函数,则等于().
(Ⅰ)证明积分中值定理:设f(x)在[a,b]上连续,则存在ξ∈[a,b],使∫abf(x)dx=f(ξ)(b-a);(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,证明至少存在一点ξ∈(1,3),使得φ’’(ζ)
(1997年试题,二)设则g[f(x)]=().
设则二次型的对应矩阵是__________.
求解二阶微分方程的初值问题
随机试题
工业企业建筑生活用水定额的确定。以下哪条错误?[2009年第50题]
拇指示指麻木、肱二头肌反射消失提示受损的是
可摘局部义齿基托与天然牙关系的表述中,正确的是
女40岁,1周前唇周出现红斑,感觉灼痒,一天后出现成簇针尖大小水疱,一天后疱破溃糜烂后结痂,患病前有感冒史,此病的诊断可能是()
下列关于DNA复制的叙述错误的是
白林与刘明发生纠纷,在开庭审理时,白林作为原告提交了下列证据,哪些不属于不能作为单独认定案件事实的依据?()
建设项目合同结构图中,矩形框表示一个建设项目的()。
关于文件性病毒,下列说法不正确的是()。
互联网上每台服务器的域名不是唯一的。()
健美操于20世纪_______年代初传到我国。
最新回复
(
0
)