首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线L:y=f(x)≥0(x≥0),其中f(x)连续可导,P(x,y)为曲线L上任意一点,过点P的切线在y轴上的截距与过点P的法线在x轴上的截距相等,又曲线经过点M0(1,1),求该曲线方程.
设曲线L:y=f(x)≥0(x≥0),其中f(x)连续可导,P(x,y)为曲线L上任意一点,过点P的切线在y轴上的截距与过点P的法线在x轴上的截距相等,又曲线经过点M0(1,1),求该曲线方程.
admin
2021-03-10
120
问题
设曲线L:y=f(x)≥0(x≥0),其中f(x)连续可导,P(x,y)为曲线L上任意一点,过点P的切线在y轴上的截距与过点P的法线在x轴上的截距相等,又曲线经过点M
0
(1,1),求该曲线方程.
选项
答案
过点P的切线方程为Y-y=y’(X-x), 令X=0,该切线在y轴上的截距为Y=y-xy’;过点P的法线方程为Y-y=[*](X-x), 令Y=0,该法线在x轴上的截距为X=x+yy’, 由y-xy’=x+yy’得[*] 整理得[*] 令u=[*],则u+x[*],变量分离得[*] 积分得[*]+arctanu+1nx=C, 因为曲线经过点M
0
(1,1),所以[*] 故所求的曲线方程为[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/X784777K
0
考研数学二
相关试题推荐
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y1=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。求容器的容积;
已知f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,且f(0)=0。证明f(x)在区间(0,3π/2)内存在唯一零点。
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x是某二阶线性非齐次微分方程的三个解,求此微分方程.
某闸门的形状与大小如图1—3—7所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高应为多少米?
(1998年试题,十三)已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,一1,α)T,β=(3,10,6,4)T,问:(1)a,b取何值时,β不能由α1,α2,α3线性表示?(2)a,b取何值时,β可由α1,α2,α3线性表
(14)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1-2A2,2A2+3A3,-3A3+2A1|=_______.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=_____________.
随机试题
________hisfluentEnglish,hemust________inAmericaforalongtime.
男性,70岁,左侧肺癌,左侧胸膜转移,大量胸水。现气急明显,减轻症状所应采取的措施是:()
哪项法洛四联症的表现是错误的
双侧髁状突颈部骨折后出现移位伴开1胎,首选合理的治疗方法是()
甲公司是《保护工业产权巴黎公约》成员国A国的企业,于2012年8月1日向A国在牛奶产品上申请注册“白雪”商标被受理后,又于2013年5月30日向我国商标局申请注册“白雪”商标,核定使用在牛奶、糕点和食品容器这三类商品上。下列哪些说法是错误的?
甲公司将拥有的“飞天”注册商标使用在其生产的钢琴上。下列各项商标使用行为均未经甲公司许可,其中不构成侵犯甲公司“飞天”注册商标专用权的是()。
支付令,是人民法院适用的督促程序,根据债权人的中请,向债务人发出的要求其按期向债权人给予一定数额的金钱或者有价证券的命令。发出支付令不需要经过审判程序,如果债务人在法定期间不提出异议又不支付的才予以强制执行。根据上述定义,下列为支付令的是()。
设,其中f可导,且f’(0)≠0,则dy/dx|t=0=__________.
Asitturnedouttobeasmallhouseparty,we_______soformally.
(1)Pageants(露天演出)areusuallyconceivedonafairlylargescale,oftenundertheauspicesofsomelocalorcivicauthorityora
最新回复
(
0
)