首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知χ1,χ2,…,χ10是取自正态总体N(μ,1)的10个观测值,统计假设为 H0μ=μ0=0;H1:μ≠0. (Ⅰ)如果检验的显著性水平α=0.05,且拒绝域R={||≥k},求k的值; (Ⅱ)若已知=1,是否可以据此样本推断μ
已知χ1,χ2,…,χ10是取自正态总体N(μ,1)的10个观测值,统计假设为 H0μ=μ0=0;H1:μ≠0. (Ⅰ)如果检验的显著性水平α=0.05,且拒绝域R={||≥k},求k的值; (Ⅱ)若已知=1,是否可以据此样本推断μ
admin
2018-11-23
59
问题
已知χ
1
,χ
2
,…,χ
10
是取自正态总体N(μ,1)的10个观测值,统计假设为
H
0
μ=μ
0
=0;H
1
:μ≠0.
(Ⅰ)如果检验的显著性水平α=0.05,且拒绝域R={|
|≥k},求k的值;
(Ⅱ)若已知
=1,是否可以据此样本推断μ=0(α=0.05)?
(Ⅲ)若H
0
:μ=0的拒绝域为R={|
|≥0.8},求检验的显著性水平α.
选项
答案
(Ⅰ)对于H
0
:μ=μ
0
;H
1
:μ≠0,当H
0
成立时,检验统计量[*]~N(0,1). 根据α=0.05,所以λ=1.96,即P{|U|≥1.96}=0.05.该检验的拒绝域为 R={|U|≥1.96}={|[*]|≥1.96}=[*] 于是k=[*]≈0.62. (Ⅱ)由(Ⅰ)知拒绝域R={|[*]|≥0.62},如果[*]=1,则[*]>0.62,因此应拒绝H
0
,即不能据此样本推断μ=0. (Ⅲ)显著性水平α是在H
0
成立时,拒绝H
0
的概率,即 α=P{(χ
1
,χ
2
,…,χ
10
)∈R|H
0
成立}=P{(χ
1
,χ
2
,…,χ
10
)∈R|μ=0} =P{|[*]|≥0.8|μ=0}. 由于μ=0时,[*],所以有 α=[*] =2[1-Ф(2.53)]=0.0114.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/X6M4777K
0
考研数学一
相关试题推荐
设X1,X2,…,Xn是来自总体X~N(0,1)的简单随机样本,则统计量服从()
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程。[附表]:t分布表,P{t(n)≤tp(n)}=p
已知矩阵A与B相似,其中求a,b的值及矩阵P,使P-1AP=B.
设随机变量X的概率密度为,-∞<x<+∞,求:(1)常数C;(2)X的分布函数F(x)和P{0≤X≤1};(3)Y=e-|X|的概率密度fY(y).
设随机变量X服从正态分布N(μ,σ2),已知P{X≤2}=0.062,P{X≥9}=0.025,则概率P{|X|≤4}=_______。(Ф(1.54)=0.938,Ф(1.96)=0.975)
已知向量组与向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a、b的值.
设随机变量X在区间(一1,1)上服从均匀分布,Y=X2,求(X,Y)的协方差矩阵和相关系数.
测得两批电子器材的部分电阻值为:A批:140,138,143,142,144,139;B批:135,140,142,136,135,140.设两批电子器材的电阻均服从正态分布,试在α=0.05下检验这两批电子器材的平均电阻有无显著差异
随机试题
龙门吊、架桥机等轨道行走类设备必须设置()。
城市土地使用权采用协议出让方式的有()。
甲公司系增值税一般纳税人,适用增值税税率为17%。主要从事家用电器的生产和销售,产品销售价格为公允价格。2013年度,甲公司有关销售业务及其会计处理如下:(1)2013年6月30日,甲公司与乙公司签订销售合同,以800万元价格向乙公司销售一批A产品;同时
商业银行操作风险的特点是()
我国当代教师的根本任务是()。
Television,themodernwonderofelectronics,bringstheworldintoyourownhomeinsightandsound.Andtheword"television"
已知求
SQL语句中修改表结构的命令是______。
SpellingandWritingThereisapopularbeliefamongparentsthatschoolsarenolongerinterestedinspelling.NoschoolI
(1)PeterBenchley,65,theauthorandconservationistwhowroteJaws,theshark-attacknovelthatbecameaclassicmovieandpro
最新回复
(
0
)