首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
admin
2017-03-15
56
问题
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求曲线y=y(x)的方程.
选项
答案
设曲线y=y(x)上的点P(x,y)处的切线方程为 Y一y=y’(X—x), [*] 并且y’(0)=1,两边对x求导并化简得yy"=(y’)
2
,这是可降阶的二阶常微分方程,令p=y’,则上述方程可化 [*] 根据y’(0)=1,y(0)=1,可得C
1
=1,C
2
=1. 故所求曲线的方程为y=e
x
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/jVu4777K
0
考研数学一
相关试题推荐
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
由Y=sinx的图形作下列函数的图形:(1)y=sin2x(2)y=2sin2x(3)y=1—2sin2x
判断下列反常积分的敛散性
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
用列举法表示下列集合:(1)方程x2-7x+12=0的根的集合(2)抛物线y=x2与直线x—y=0交点的集合(3)集合{x||x-1|≤5的整数}
微分方程xy’+y=0满足条件y(1)=1的解是y=________.
由结论可知,若令φ(x)=xf(x),则φˊ(x)=f(x)+xfˊ(x).因此,只需证明φ(x)在[0,1]内某一区间上满足罗尔定理的条件.令φ(x)=xf(x),由积分中值定理可知,存在η∈(0,1/2)使[*]
若二次型f(x1,x2,x3)=2x12+x22+x32+2x1x2+tx2x3是正定的,则t的取值范围是__________.
随机试题
我国《旅游法》第11条规定,()等旅游者在旅游活动中依照法律、法规和有关规定享受便利和优惠。
《吴越春秋》与《越绝书》在内容上的不同表现在【】
离婚时,女方个人所欠的债务,如女方生活有困难()
A.大补元煎B.知柏地黄丸C.通窍活血汤D.槐角丸E.血府逐瘀汤肺癌,症见咳嗽不畅,胸闷气憋,胸痛有定处,如锥如刺,或痰血暗红,唇紫暗,证属瘀阻肺络者,选方
法官的以下哪种行为没有违反《法官法》?()
关于上海证券交易所A股送股日程安排,下列说法错误的是()
俄亥俄大学一系列关于领导的行为研究得出两个主要的维度是()。
不同社会和家庭背景、不同天赋条件的学生应该受到社会、学校和教师的平等对待,使所有在校学生一视同仁地获得平等的发展机会。这属于教育平等的哪一项内容()
1343
When,intheageofautomation,mansearchesforaworkertodothetedious,unpleasantjobsthatareimpossibletomechanize,h
最新回复
(
0
)