首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A和B满足A+2B=AB。 (Ⅰ)证明:A-2E为可逆矩阵,其中E为n阶单位矩阵; (Ⅱ)证明:AB=BA; (Ⅲ)已知B=,求矩阵A。
设n阶矩阵A和B满足A+2B=AB。 (Ⅰ)证明:A-2E为可逆矩阵,其中E为n阶单位矩阵; (Ⅱ)证明:AB=BA; (Ⅲ)已知B=,求矩阵A。
admin
2018-01-26
83
问题
设n阶矩阵A和B满足A+2B=AB。
(Ⅰ)证明:A-2E为可逆矩阵,其中E为n阶单位矩阵;
(Ⅱ)证明:AB=BA;
(Ⅲ)已知B=
,求矩阵A。
选项
答案
(Ⅰ)由A+2B=AB,有AB-2B-A+2E=2E,即 (A-2E).[*](B-E)=E, 根据矩阵可逆的定义,所以矩阵A-2E可逆。 (Ⅱ)由(Ⅰ)知(A-2E)
-1
=[*](B-E)。那么 (A-2E).[*](B-E)=[*](B-E)(A-2E), 即有 AB-A-2B+2E=BA-2B-A+2E, 故AB=BA。 (Ⅲ)由(A-2E).[*](B-E)=E知A-2E=[ [*](B-E)]
-1
,得A=2(B-E)
-1
+2E。 因为 (B-E)
-1
=[*] 所以 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Wcr4777K
0
考研数学一
相关试题推荐
设f(x)=3x2+Ax-3(x>0),A为正常数,问A至少为多少时,f(x)≥20.
设f(x)二阶可导,且f"(x)>0.证明:当x≠0时,f(x)>x.
设f(x)在[一a,a](a>0)上有四阶连续的导数,存在.写出f(x)的带拉格朗日余项的马克劳林公式;
设,求a,b的值.
已知曲线y=y(x)经过点(1,e-1),且在点(x,y)处的切线方程在y轴上的截距为xy,求该曲线方程的表达式.
证明:r(A+B)≤r(A)+r(B).
若P(x,y),Q(x,y)在单连通域G内有一阶连续偏导数,且对G内任意简单闭曲线L有,则③曲线积分与路径无关;④P(x,y)dx+Q(x,y)dy是某个函数μ(x,y)的全微分。这四种说法中正确的是()。
已知(1,一1,0)T是二次型xTAx=αx12+x32一2x1x2+2x1x3+2bx2x3的矩阵A的特征向量,利用正交变换化二次型为标准形,并写出所用的正交变换和对应的正交矩阵。
设三阶方阵A、B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则行列式|B|=________.
随机试题
纺织印染厂与服装加工厂联合属于【】发展战略。
尿中β2微球蛋白增多而血中不增高,这种蛋白尿属于
甲乙双方订立的商品房买卖合同中约定:“乙将自己开发建设的某公寓A座第10层住房出售给甲,2010年11月8日交付房屋”。2010年9月27日,甲发现该公寓A座仅盖到第2层。根据合同法规定,()。
四大佛教名山是()。
审核引进的国外电子出版物时,为避免出现严重政治问题,特别要注意寻找和审核()文件。
你是新提拔的年轻领导干部,所分管的科室负责人中,既有你的老师,也有你的师兄,还有大学时代的同学。他们有时在你面前摆资格。对此,你会怎样处理呢?
2007年6月与2006年同期相比,网民数增加了:下列说法正确的是:
一小偷藏匿于某商场,三名保安甲、乙、丙分头行动搜查商场的100家商铺。已知甲检查过80家,乙检查过70家,丙检查过60家,则三人都检查过的商铺至少有()家。
Asthesemesterisdrawingtoanend,thestudentunioniscallingonitsyouthto_____thetemptationtocheatonexams.
性情
最新回复
(
0
)