首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶方阵,且A的各行元素之和为0,A*为A的伴随矩阵,A*≠O,则A*x=0基础解系的解向量的个数为___________________.
设A为n阶方阵,且A的各行元素之和为0,A*为A的伴随矩阵,A*≠O,则A*x=0基础解系的解向量的个数为___________________.
admin
2021-02-25
124
问题
设A为n阶方阵,且A的各行元素之和为0,A
*
为A的伴随矩阵,A
*
≠O,则A
*
x=0基础解系的解向量的个数为___________________.
选项
答案
n-1
解析
本题考查齐次线性方程组的基础解系的概念和矩阵A与其伴随矩阵A
*
的秩的关系.
由A的各行元素之和为0知(1,1,…,1)
T
是方程组Ax=0的解.所以r(A)<n.又由A
*
≠O知,r(A)≥n-1,故r(A)=n-1,从而r(A
*
)=1,因此A
*
x=0的基础解系的解向量的个数为n-1.
转载请注明原文地址:https://www.kaotiyun.com/show/WY84777K
0
考研数学二
相关试题推荐
已知线性方程组(1)a、b为何值时,方程组有解?(2)当方程组有解时,求出方程组的导出组的一个基础解系.(3)当方程组有解时,求出方程组的全部解.
证明n维向量α1,α2……αn线性无关的充要条件是
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫ab(x)dx=1.证明:∫abf(x)φ(c)dx≥f[∫abxφ(x)dx].
设f(χ)在χ=0的某邻域内有连续的一阶导数,且f′(0)=0,f〞(0)存在.求证:
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:(1)aij=Aij←→ATA=E且|A|=1;(2)aij=一Aij←→ATA=E且|A|=一1.
设f(u,v)具有二阶连续偏导数,且满=1,又g(χ,y)=f(χy,),求
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f’’’(2)=_______。
设函数f(x,y)可微,且对任意的x,y,都有,则使不等式f(x1,y1)<f(x2,y1)成立的一个充分条件是
随机试题
在微波通信的数字信道中,8448kbit/s设备输入口的抖动间隔为()ns。
______,he’llmakeafirst-classtennisplayer.
在我国会计实务当中,企业应按()提取坏账准备。
不定期清查一般是在()时进行。
水文条件是指江、河、湖、海等水体的()等方面的情况。
下列描述中,哪一项不是代订合同所具有的法律特征?()
阅读下面的材料,根据要求作文。有些人一提到空谷就想起悬崖峭壁,而另一些人想到的却是栈道桥梁。上面的材料,引发你怎样的感悟和联想?请就此写一篇不少于800字的议论文或记叙文。要求:①必须符合文体要求;②角度自选,立意自定,标题自
似动知觉
当以各种股票的市场价值占市场组合总的市场价值的比重为权数时,所有证券的贝塔系数的加权平均值等于0。[中国人民大学2013研]
计算并填写下表。
最新回复
(
0
)