首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在P3中,已知α1=(一1,0,2),α2=(0,1,1),α3=(3,一1,0)是P3的一组基,并且Tα1=(一5,0,3),Tα2=(0,-1,6),Tα3=(一5,一1,9).求: (1)线性变换T在基α1,α2,α3下的矩阵. (2)T在基
在P3中,已知α1=(一1,0,2),α2=(0,1,1),α3=(3,一1,0)是P3的一组基,并且Tα1=(一5,0,3),Tα2=(0,-1,6),Tα3=(一5,一1,9).求: (1)线性变换T在基α1,α2,α3下的矩阵. (2)T在基
admin
2020-09-25
86
问题
在P
3
中,已知α
1
=(一1,0,2),α
2
=(0,1,1),α
3
=(3,一1,0)是P
3
的一组基,并且Tα
1
=(一5,0,3),Tα
2
=(0,-1,6),Tα
3
=(一5,一1,9).求:
(1)线性变换T在基α
1
,α
2
,α
3
下的矩阵.
(2)T在基ε
1
=(1,0,0),ε
2
=(0,1,0),ε
3
=(0,0,1)下的矩阵.
选项
答案
(1)设Tα
1
=x
1
α
1
+x
2
α
2
+x
3
α
3
,所以有[*] 解得x
1
=2,x
2
=-1,x
3
=-1,所以Tα
1
=2α
1
一α
2
一α
3
. 同理可得Tα
2
=3α
1
+α
3
,Tα
3
=5α
1
一α
2
. 从而可得T在基α
1
,α
2
,α
3
下的矩阵为[*] (2)设ε
1
=x
1
α
1
+x
2
α
2
+x
3
α
3
,从而有[*] 解得[*] 同理可得[*] 又因为Tα
1
=(一5,0,3)=一5ε
1
+3ε
3
,Tα
2
=(0,一1,6)=一ε
2
+6ε
3
,Tα
3
=(一5,一1,9)=一5ε
1
一ε
2
+9ε
3
,从而有 [*] 同理可得[*] 所以T在基ε
1
,ε
2
,ε
3
下的矩阵为[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/WWx4777K
0
考研数学三
相关试题推荐
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
设A,B都是三阶矩阵,A=且满足(A*)-1B=ABA+2A2,则B=______.
设u=e—xsin的值为_________.
设A=,B为三阶非零矩阵,且AB=0,则r(A)=__________.
设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A*B-1|=_______.
设A,B为随机事件,则P(A)=P(B)充分必要条件是()
(98年)设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:(1)A2;(2)矩阵A的特征值和特征向量.
设某酒厂有一批新酿的好酒,如果现在(假定t=0)就售出,总收入为假定银行的年利润为r,并以连续复利计息.试求窖藏多少年售出可使总收入的现值最大,并求r=0.06时的t值.
设齐次线性方程组经高斯消元化成的阶梯形矩阵是,则自由变量不能取成
假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.
随机试题
教师应时刻关注幼儿的口吃,及时纠正。()
前列腺()
患者女,50岁,工人,高中文化,有听力障碍。护士在病室与其沟通时,不妥的方式是
乌头反贝母、瓜蒌、半夏、白薇、白及。()
国务院批准公布的重要地理信息数据,由()公布。
已知工作的紧后工作为F和G。F工作的最迟完成时间为16天,持续时间3天;G工作的最迟完成时间为20天,持续时间5天。E工作的持续时间4天,则E工作的最迟开始时间为()天。
在违约概率模型中,()通过应用期权定价理论求解出信用风险溢价和相应的违约率。
行政复议期间允许行政复议中止的情形有()。
求下列极限:
AAlikethoseofbaldeagles,thenestsofospreysareBlesssuccessfulinareaswhereCtheirfoodiscontaminatedwithtoxicDch
最新回复
(
0
)