首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2011年)求方程karctanx—x=0不同实根的个数,其中k为参数.
(2011年)求方程karctanx—x=0不同实根的个数,其中k为参数.
admin
2018-06-30
124
问题
(2011年)求方程karctanx—x=0不同实根的个数,其中k为参数.
选项
答案
解1 令f’(x)=karctanx—x,则f(x)是(一∞,+∞)上的奇函数,且 [*] 当k一1≤0即k≤1时,f’(x)<0(x≠0),f(x)在(一∞,+∞)内单调减少,方程f(x)=0只有一个实根x=0. 当k一1>0即k>1时,在[*]内,f’(x)>0,f(x)单调增加;在[*]内,f’(x)<0,f(x)单调减少,所以[*]是f(x)在(0,+∞)内的最大值. 由于f(0)=0,所以[*] 又因为[*]所以存在[*]使得f(ξ)=0. 由f(x)是奇函数及其单调性可知:当k>1时,方程f(x)=0有且仅有三个不同实根x=一ξ,x=0,x=ξ. 解2 令f(x)=karctanx-x,显然f(x)是奇函数,则其零点关于原点对称,f(0)=0,只需讨论f(x)在(0,+∞)上零点的个数,为此,令 [*] g(x)与f(x)在(0,+∞)内零点个数相同, [*] 则g’(x)>0 x∈(0,+∞) g(x)单调增,又 [*] 若k≤1,g(x)在(0,+∞)内:无零点,原方程有唯一实根x=0; 若k>1,g(x)在(0,+∞)内有唯一零点,原方程有三个实根.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/WRg4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关.证明:A不可逆.
设向量组α1=[a11,a21,…,an]T,α2=[a11,a22,…,an2]T,…,αs=[a1s,a2s,…,a1ts]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[-1,2,2,1]T.求线性方程组(Ⅰ)的基础解系;
假设随机变量X服从参数为λ的指数分布,求随机变量Y=1-e-λX的概率密度函数fy(y).
向半径为r的圆内随机抛一点,求此点到圆心之距离X的分布函数F(x),并求
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
随机试题
UPS是一家大型的国际快递公司,它除了自身拥有几百架货物运输飞机之外,还租用了几百架货物运输飞机,每天运输量达1000多万件。UPS在世界上建立了10多个航空运输的中转中心,在200多个国家和地区建立了几万个快递中心。UPS公司的员工达到几十万,年营业额
下列各骨中,成对的面颅骨是()
在使用超声波时,要注意不能使声头空载,是因为
A、垂直分离斜视B、上斜肌肌鞘综合征C、眼球后退综合征D、甲状腺相关眼病E、固定性斜视眼外肌变性造成的眼球运动受限()
患者,男,49岁。脑出血昏迷入院两天。查:体温36℃,心率60次/分,呼吸16次/分,血压150/90mmHg。用上述水温的原因是
在项目的施工阶段,监理工程师对生产设备的控制,主要是控制设备的购置、设备的检查验收、设备的安装质量和( )。
2014年中央一号文件继续关注“三农”问题,这是我国中央一号文件持续()年关注“三农”问题。
已知向量组(I)α1=(1,3,0,5)T,α2=(1,2,1,4)T,α3=(1,1,2,3)T与向量组(Ⅱ)β1=(1,一3,6,一1)T,β2=(a,0,6,2)T等价,求a,b的值.
Access中表和数据库的关系是()。
Afterhehadfinishedtheblueprintoftheproject,he______ittothecommitteeforapproval.
最新回复
(
0
)