首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(-1,0,1,0)T,ξ3=(0,1,1,0)T是(Ⅰ)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,-1,0)T是(Ⅱ)的一个基础解系.求(Ⅰ)和(Ⅱ)公共解.
设(Ⅰ)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(-1,0,1,0)T,ξ3=(0,1,1,0)T是(Ⅰ)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,-1,0)T是(Ⅱ)的一个基础解系.求(Ⅰ)和(Ⅱ)公共解.
admin
2018-06-27
86
问题
设(Ⅰ)和(Ⅱ)都是4元齐次线性方程组,已知ξ
1
=(1,0,1,1)
T
,ξ
2
=(-1,0,1,0)
T
,ξ
3
=(0,1,1,0)
T
是(Ⅰ)的一个基础解系,η
1
=(0,1,0,1)
T
,η
2
=(1,1,-1,0)
T
是(Ⅱ)的一个基础解系.求(Ⅰ)和(Ⅱ)公共解.
选项
答案
现在(Ⅰ)也没有给出方程组,因此不能用例4.24的代入的方法来决定c
1
,c
2
应该满足的条件了.但是(Ⅰ)有一个基础解系ξ
1
,ξ
2
,ξ
3
,c
1
η
1
+c
2
η
2
满足(Ⅰ)的充分必要条件为c
1
η
1
+c
2
η
2
能用ξ
1
,ξ
2
,ξ
3
线性表示,即r(ξ
1
,ξ
2
,ξ
3
,c
1
η
1
+c
2
η
2
)=r(ξ
1
,ξ
2
,ξ
3
).于是可以通过计算秩来决定c
1
,c
2
应该满足的条件: [*] 于是当3c
1
+c
2
=0时c
1
η
1
+c
2
η
2
也是(Ⅰ)的解.从而(Ⅰ)和(Ⅱ)的公共解为: c(η
1
-3η
2
),其中c可取任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Vak4777K
0
考研数学二
相关试题推荐
设xOy平面第一象限中有曲线F:y=y(x),过点y’(x)>0.M(x,y)为F上任意一点,满足:弧段的长度与点M处厂的切线在x轴上的截距之差为求曲线F的表达式.
设其中f(s,t)有连续的二阶偏导数.求du.
已知累次积分其中a>0为常数,则,可写成
设f(x)在(一∞,+∞)内一阶可导,求证:若f(x)在(一∞,+∞)是凹函数,则或
设有以下函数①②③④则在点x=0处可导的共有
已知三元二次型xTAx的平方项系数均为Ω设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
下列矩阵中不能相似对角化的是
计算定积分(常数(a>0).
设ξ1=[1,一2,3,2]T,ξ2=[2,0,5,一2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是()
设,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分
随机试题
男,45岁,间断腹痛、腹泻3年,排便4~5次/天,便质不成形,无脓血、黏液,服用小檗碱、诺氟沙星等腹泻可稍缓解,近半月症状加重,大便7~8次/天,大便常规正常。下列治疗方法中恰当的是
男性,43岁。便中排节片,头皮可及数个圆形结节,无压痛,无粘连,2~3天癫痫发作一次,已用阿苯达唑治疗10天,近3天无癫痫发作。治疗过程中,下列哪项无必要
下列是换药的适应证的是
有关污水处理厂选址的要求,下列正确的是()。
权利人在申请知识产权海关保护的过程中应履行的义务有()。
全陪导游员是组团社的代表,对所带领的旅游团(者)的旅游活动负有()。
对一个组织来说,各个组成部分往往是________的,而劣质的部分往往决定了整个组织的水平。为了发挥组织的________作用,释放它的潜力,就必须弥补薄弱环节,使组织能够在市场竞争中处于不败之地。填入画横线部分最恰当的一项是:
人生价值内在地包含了人生的自我价值和社会价值两个方面。自我价值和社会价值关系,两者的关系是()
下列程序的输出结果为#include<iostream.h>intfunc(intn){if(n<1)return1;elsereturnn+func(n-1);retu
A、Alcoholusewillcausediseases.B、Womendrinkmorethanmen.C、Europehasthehighestalcoholuse.D、Alcoholisaddictiveto
最新回复
(
0
)