首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x+x2+-…+xn,n=2,3,….(1)证明方程fn(x)=1在[0,+∞)有唯一实根xn;
设fn(x)=x+x2+-…+xn,n=2,3,….(1)证明方程fn(x)=1在[0,+∞)有唯一实根xn;
admin
2020-03-16
51
问题
设f
n
(x)=x+x
2
+-…+x
n
,n=2,3,….(1)证明方程f
n
(x)=1在[0,+∞)有唯一实根x
n
;
选项
答案
(1)f
n
(x)连续,且f
n
(0)=0,f
n
(1)=n>1,由介值定理,[*]∈(0,1),使f
n
(x
n
)=1,n=2,3,…,又x>0时,f
n
’(x)=1+2x+…+nx
n-1
>0,故f
n
(x)严格单增,因此x
n
是f
n
(x)=1在[0,+∞)内的唯一实根. (2)由(1)可得,x
n
∈(0,1),n=2,3,…,所以{x
n
}有界. 又因为f
n
(x
n
)=1=f
n+1
(x
n+1
),n=2,3,…,所以 x
n
+x
n
2
+…+x
n
n
=x
n+1
+x
n+1
2
+…+x
n+1
n
+x
n+1
n+1
, 即(x
n
+x
n
2
+…+x
n
n
)一(x
n+1
+x
n+1
2
+…+x
n+1
n
)=x
n+1
n+1
>0,因此x
n
>x
n+1
,n=2,3,…,即{x
n
}严格单调减少.于是由单调有界准则知[*]由x
n
+x
n
2
+…+x
n
n
=1得[*]=1.因为0<x
n
<1,所以[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/VE84777K
0
考研数学二
相关试题推荐
计算.
计算|x2+y2一2y|dσ,其中D:x2+y2≤4.
求
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]2≥0(x∈R).(1)证明:f(x1)f(x2)≥f2x1,x2∈R);(2)若f(0)=1,证明:f(x)≥ef’(0)xx(x∈R).
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设α是一个n维非零实列向量.构造n阶实对称矩阵A,使得它的秩=1,并且α是A的特征向量,特征值为非零实数A.
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(l>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx;(Ⅱ)求
设当0≤x≤1时,f(x)=xsinx,对于其他x,f(x)满足f(x)+k=2f(x+1),求常数k的值,使f(x)在x=0处连续.
求极限
曲线y=的渐近线()
随机试题
患者,男,70岁。神志痴呆,表情淡漠,举止失常,面色晦滞,胸闷泛恶,舌苔白腻,脉滑。其病机是
患儿,4岁。发热3天伴流涕、咳嗽、流泪就诊。查:T40℃,球结膜充血,心肺检查阴性,耳后发际处可见少许红色斑丘疹。该患儿应考虑为
一根雨水管DN1200mm,原来n=0.015,Q=1.8m3/s,内壁刮管除垢涂层后,n=0.012,R和I保持不变,则其传输水量Q为()m3/s。
我国工业污染治理的主线是推行(),逐步从未端治理为主转到生产全过程控制。
项目执行管理层次的工作任务包括()。
农业区位理论的创始人是()。
某股份有限公司(本题下称“股份公司”)是一家于2000年8月在上海证券交易所上市的上市公司。该公司董事会于2001年3月28日召开会议,该次会议召开的情况以及讨论的有关问题如下:(1)股份公司董事会由7名董事组成。出席该次会议的董事有董事A、董事B、董事
基于经济利己主义的环保制度不可取——2010年英译汉及详解Onebasicweaknessinaconservationsystembasedwhollyoneconomicmotivesisthatmostmembers
在高级程序设计语言中,对程序员来说,数据类型限定了(52)。
在窗体上画一个名称为Text1的文本框,通过属性窗口把窗体的KeyPreview属性设置为True,然后编写如下程序:OptionBase1PrivateSubForm_Load()ShowText1.SetFocusEn
最新回复
(
0
)