首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵.A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵.A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
admin
2019-04-22
84
问题
设A为n阶矩阵.A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0,于是A
*
b=A
*
AX=|A|X=0. 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠0, 所以r(A
*
)=1,且r(A)=n-1. 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n-1个线性无关的解向量,而A
*
A=0,所以A的列向量组α
1
,α
2
,…,α
n
为方程组A
*
X=0的一组解向量. 由A
11
≠0,得α
2
,…,α
n
线性无关,所以α
2
,…,α
n
是方程组A
*
X=0的基础解系. 因为A
*
b=0,所以b可由α
2
,…,α
n
线性表示,也可由α
1
,α
2
,…,α
n
线性表示,故r(A)=[*]=n-1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/63V4777K
0
考研数学二
相关试题推荐
设A是一个五阶矩阵,A*是A的伴随矩阵,若η1,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=___________。
已知η1,η2,η3,η4是齐次方程组AX=0的基础解系,则此方程组的基础解系还可以是
设f(χ)在χ0的邻域内四阶可导,且|f(4)(χ)|≤M(M>0).证明:对此邻域内任一异于χ0的点χ,有其中χ′为χ关于χ0的对称点.
设曲线=1(0<a<4)与χ轴、y轴所围成的图形绕z轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
求极限
计算,其中D为单位圆血x2+y2=1所围成的第一象限的部分.
已知三阶矩阵A的行列式|A|=一3,A*为A的伴随矩阵,AT为A的转置矩阵。如果kA的逆矩阵为A*一|AT|A-1,则k=________。
设半径为R的球面S的球心在定球面x2+y2+z2=a2(a>0)上,问R取何值时,球面S在定球面内的面积最大?
求u=x2+y2+z2在=1上的最小值.
随机试题
不能引起特异性感染的是
热证的舌色变化多为
由于久期存在缺陷,对债券价格对利率的敏感性更准确地测量需要更高阶的价格一收益变动情况,最常用的方法就是凸性方法。( )
阅读下面材料,根据要求写作文。美国著名作家和教育家爱默生曾精辟地指出:“教育成功的秘密在于尊重学生。谁掌握了这把钥匙,谁将获得教育上巨大的成功。”用规范的现代汉语写作,不要脱离材料内容或含义,立意自定,题目自拟,观点明确,分析具体,条理
教师根据教学目标创设一定的问题情境,并通过这一问题情境,使学生产生认知冲突。然后,在教师的指导下,学生运用已有的知识和相应的材料进行探究,提出解决问题的假设并验证假设,以此获得知识和发展能力的方法是()。
π/4
在面向对象程序设计中,程序运行的最基本实体是______。
已知英文字母m的ASCII码值为109,那么英文字母p的ASCII码值是
HowNativeAmericansdevelopedcornisapuzzling,fornowildcomhaseverbeendiscovered.
______,I’lllovehimallthesame.
最新回复
(
0
)