首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解下列微分方程: (Ⅰ) y"一7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ) y"+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ) y"’+y"+y’+y=0的通解.
解下列微分方程: (Ⅰ) y"一7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ) y"+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ) y"’+y"+y’+y=0的通解.
admin
2018-11-21
95
问题
解下列微分方程:
(Ⅰ) y"一7y’+12y=x满足初始条件y(0)=
的特解;
(Ⅱ) y"+a
2
y=8cosbx的通解,其中a>0,b>0为常数;
(Ⅲ) y"’+y"+y’+y=0的通解.
选项
答案
(Ⅰ)对应齐次方程的特征方程为λ
2
—7λ+12=0,它有两个互异的实根λ
1
=3与λ
2
=4,所以,其通解为[*](x)=C
1
e
3x
+C
2
e
4x
,其中C
1
与C
2
是两个任意常数. 由于0不是特征根,所以非齐次微分方程的特解应具有形式y
*
(x)=Ax+B.代入方程可得A=[*],所以,原方程的通解为y(x)=[*]+C
1
e
3x
+C
2
e
4x
. 代入初始条件,则得[*] 因此所求的特解为y(x)=[*](e
4x
一e
3x
). (Ⅱ)由于对应齐次微分方程的特征根为±ai,所以其通解为y(x)=C
1
cosax+C
2
sinax.求原非齐次微分方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Acosbx+Bsinbx,将其代入原方程可得 A=[*],B=0. 所以,通解为y(x)=[*]cosbx+C
1
cosax+C
2
sinax,其中C
1
C
2
是两个任意常数. ②当a=b时,特解的形式应为Axcosax+Bxsinax,代入原方程可得 A=0.B=[*]. 原方程的通解为y(x)=[*]xsinax+C
1
cosax+C
2
sinax,其中C
1
,C
2
是两个任意常数. (Ⅲ)这是一个三阶常系数线性齐次方程,其相应的特征方程为λ
3
+λ
2
+λ+1=0,分解得(λ+1)(λ
2
+1)=0,其特征根为λ
1
=一1,λ
2,3
=±i,所以方程的通解为 y(x)=C
1
e
—x
+C
2
cosx+C
3
sinx,其中C
1
,C
2
,C
3
为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/V4g4777K
0
考研数学一
相关试题推荐
求下列函数f(x)在x=0处带拉格朗日余项的n阶勒公式:(Ⅰ)f(x)=;(Ⅱ)f(x)=exsinx.
求解下列方程:(Ⅰ)求方程xy″=y′lny′的通解;(Ⅱ)求yy″=2(y′2-y′)满足初始条件y(0)=1,y′(0)=2的特解.
设X的概率密度函数f(x)=已知P(X≤1)=,则E(X2)=___________.
原点O(0,0,0)到直线的距离d=__________.
设曲线y=ax2(x≥0,常数a>0)与曲线y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D。(Ⅰ)求D绕x轴旋转一周所成的旋转体的体积V(a);(Ⅱ)求a的值,使V(a)为最大。
幂级数(x+2)n在x=0处收敛,在x=-4处发散,则幂级数的收敛域为________。
某建筑工程打地基时,需用汽锤将桩打进土层。汽锤每次击打,都将克服土层对桩的阻力而做功。设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0)。汽锤第一次击打将桩打进地下a米。根据设计方案,要求汽锤每次击打桩时所做的功与前一次击打时所做的功
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解。
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f’’(0)以及极限
求极限
随机试题
根据我国《宪法》规定,决定战争与和平问题的职权由()。
下列选项中属于蛋用鸭的是________。
患者王某,继往有肝硬化病史10余年,近2月来腹胀明显,心慌、气短,呼吸困难,查体:腹部膨隆,状如蛙腹,B超示大量腹水。对王某的护理不正确的是
关于偏头痛描述正确的是
下列对劣药的叙述,错误的是
A.麻醉药品B.毒性药品C.第二类精神药品D.放射性药品E.戒毒药品地西泮属于
获取理财师的执业资格不仅要通过专业资格考试,还需要达到相应的认证标准。国内各类专业理财证书基本都执行“4E”认证标准,“4E”由()四部分组成。
企业出口的下列应税消费品中,属于消费税出口免税并退税范围的有()。
()是黄居宷保留下来唯一一幅构图完整的创作作品。
Obama’sproposalismeantto
最新回复
(
0
)