首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶方阵,P,Q为n阶可逆矩阵,则下列命题不正确的是( )
设A,B为n阶方阵,P,Q为n阶可逆矩阵,则下列命题不正确的是( )
admin
2019-08-12
53
问题
设A,B为n阶方阵,P,Q为n阶可逆矩阵,则下列命题不正确的是( )
选项
A、若B=AQ,则A的列向量组与B的列向量组等价。
B、若B=PA,则A的行向量组与B的行向量组等价。
C、若B=PAQ,则A的行(列)向量组与B的行(列)向量组等价。
D、若A的行(列)向量组与矩阵B的行(列)向量组等价,则矩阵A与B等价。
答案
C
解析
将等式B=AQ中的A,B按列分块,设A=(α
1
,α
2
,…,α
n
),B=(β
1
,β
2
,…,β
n
),则有(β
1
,β
2
,…,β
n
)=(α
1
,α
2
,…,α
n
)
表明向量组β
1
,β
2
,…,β
n
可由向量组α
1
,α
2
,…,α
n
线性表示。由于Q可逆,从而有A=BQ
—1
,即(α
1
,α
2
,…,α
n
,)=(β
1
,β
2
,…,β
n
)Q
—1
,表明向量组α
1
,α
2
,…,α
n
可由向量组β
1
,β
2
,…,β
n
线性表示,因此这两个向量组等价,故选项A的命题正确。
类似地,对于PA=B,将A与B按行分块可得出A与B的行向量组等价,从而选项B的命题正确。
下例可表明选项C的命题不正确。
设
,则P,Q均为可逆矩阵,且
但B的行(列)向量组与A的行(列)向量组不等价。
对于选项D,若A的行(列)向量组与B的行(列)向量组等价,则这两个向量组的秩相同,从而矩阵A与B的秩相同,故矩阵A与B等价(两个同型矩阵等价的充分必要条件是秩相等)。故选C。[img][/img]
转载请注明原文地址:https://www.kaotiyun.com/show/USN4777K
0
考研数学二
相关试题推荐
设A=(aij)3×3是实正交矩阵,且a11=1。b=(1,0,0)T,则线性方程组Ax=b的解是______.
设A为3阶矩阵,|A|=6,|A+E|=|A-2E|=|A+3E|=0,试判断矩阵(2A)*是否相似于对角矩阵,其中(2A)*是(2A)的伴随矩阵.
已知向量α=(1,k,1)T是A=的伴随矩阵A*的一个特征向量,试求k的值及与α对应的特征值λ.
n维向量α=(a,0,…,0,a)T,a<0,A=E-ααT,A-1=E+a-1ααT,求a.
已知线性方程组的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的通解,并说明理由.
证明方程x=asinx+b(a>0,b>0为常数)至少有一个正根不超过a+b.
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
求下列隐函数的微分或导数:(Ⅰ)设ysinx-cos(x-y)=0,求dy;(Ⅱ)设方程确定y=y(x),求y’与y".
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
随机试题
平焊分为对接________、________等。
印发时间应标注在文件的()
正确判断滴虫阴道炎治愈的标准是
大多数药物在体内通过细胞膜的方式是()。
甲自制迷药在网上销售,明知乙具有犯罪意图,仍出售,并告知乙使用方法,乙用迷药多次迷倒他人拿走他人财物。关于本案,下列哪一选项是正确的?
(2010年)按照《建设工程质量管理条例》规定,施工人员对设计结构安全的试块、试件以及有关材料进行现场取样时,应当()。
下列()属于影响建设工程进度的社会环境因素。
必须逐日结出余额的账簿是()。
事先做了充分的计划和准备,安排有固定程序的活动让成员来实施的团体咨询为()。
Itisanattributiveclause______thenoun"order".
最新回复
(
0
)