首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)=(x2-x-2)|x3-x|的不可导点有
函数f(x)=(x2-x-2)|x3-x|的不可导点有
admin
2019-02-20
84
问题
函数f(x)=(x
2
-x-2)|x
3
-x|的不可导点有
选项
A、3个
B、2个
C、1个
D、0个
答案
B
解析
函数|x|,|x-1|,|x+1|分别仅在x=0,x=1,x=-1不可导且它们处处连续.因此只需在这些点考察f(x)是否可导,为此或用上题的结论,或按定义考察.
方法1 用上题的结论来判断.f(x)=(x
2
-x-2)|x||x-1||x+1|,只需考察x=0,1,-1是否可导.
考察x=0,令g(x)=(x
2
-x-2)|x
2
-1|,则f(x)=g(x)|x|,g’(0)存在,g(0)≠0,φ(x)=|x|在x=0连续但不可导,故f(x)在x0不可导.
考察x=1,令g(x)=(x
2
-x-2)|x
2
+x|,φ(x)=|x-1|,则g’(1)存在,g(1)≠0,φ(x)在x=1连续但不可导,故f(x)=g(x)φ(x)在x=1不可导.
考察x=-1,令g(x)=(x
2
-x-2)|x
2
-x|,φ(x)=|x+1|,则g’(-1)存在,g(-1)=0,φ(x)在x=-1连续但不可导,故f(x)=g(x)φ(x)在x=-1可导.因此选B.
方法2 按定义考察.
故f’
+
+(O)≠f’
-
(0).因此f(x)在x=0不可导.
在x=1处,
于是
故f’
+
(1)≠f’
-
(1).因此f(x)在x=1不可导.
在x=-1处,
因为
而且
为有界变量,于是
因此f(x)在x=-1可导.应选B.
转载请注明原文地址:https://www.kaotiyun.com/show/UHP4777K
0
考研数学三
相关试题推荐
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是
设二阶常系数齐次线性微分方程yˊˊ+byˊ+y=0的每一个解y(x)都在区间(0,+∞)上有界,则实数b的取值范围是()
设随机变量X,Y的分布函数分别为F1(x),F2(x),为使得F(x)=aF1(x)+bF2(x)为某一随机变量的分布函数,则有().
设F1(x),F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
方程组有解的充要条件是________.
曲线y=的斜渐近线为________.
设f(x)在[a,+∞)上连续,f(a)<0,而f(x)存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
计算不定积分
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且
随机试题
Havingafewtoomanydrinkscanmeanmorethanjustablackoutorabadhangover.Peoplewhoengageinbingedrinkingarecourt
四逆汤中炙甘学的作刚是()(2003年第136题)
氨茶碱治疗支气管哮喘的作用机理是
感觉的特异性投射系统的作用是
国债基金投资目标侧重于追求资本利得和长期资本增值。()
与公开发行股票相比。下列关于非公开发行股票的说法中,正确的有()。(2017年卷Ⅰ、卷Ⅱ)
根据文意,下列对“报复效应”的理解,准确的一项是( )。根据原文所提供的信息,以下推断正确的一项是( )。
美国最重要的湖泊是五大湖,其中()是唯一完全在美国境内的湖泊。
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0。证明:在开区间(a,b)内g(x)≠0;
下列对IPv6地址FE80:0:0:0801:FE:0:0:04A1的简化表示中,错误的是()。
最新回复
(
0
)