首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2019-02-20
61
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2X+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令f’(x)=0,可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)最小值.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时,f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时,f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时,需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/UFP4777K
0
考研数学三
相关试题推荐
设A为n阶正定矩阵,n维实的非零列向量ξ1,ξ2,…,ξn,满足ξiTAξi=0(i,j=1,2,…,n;i≠j).证明:向量组ξ1,ξ2,…,ξn线性无关.
已知r(A)=r1,且方程组AX=α有解,r(B)=r2,且BY=β无解,设A=[α1,α2,…,αn],B=[β1,β2,…,βn],且r[α1,α2,…,αn,β1,β2,…,βn,β]=r,则().
曲线y=k(x2一3)2在拐点处的法线通过原点,求k的值.
求曲线y=—2在其拐点处的切线方程.
设f(x)为连续的奇函数,且当x<0时,f(x)<0,f’(x)≥0.令φ(x)=∫—11f(xt)dt+∫0xtf(t2一x2)dt,讨论φ(x)在(一∞,+∞)内的凹凸性.
求由曲线y=e—xsinx的x≥0部分与x轴所围成的平面图形的面积.
设随机变量X的概率密度为F(x)是X的分布函数.求随机变量Y=F(X)的分布函数.
假设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(E(X))为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y的分布函数F(y).
假设随机变量X的概率密度为fX(x)=而随机变量Y在区间(0,X)上服从均匀分布.试求:(1)随机变量X和Y的联合概率密度f(x,y);(2)随机变量Y的概率密度fY(y).
设函数f(x)的一个原函数为,则∫x2f(1一x3)dx=__________.
随机试题
慢性肾衰竭病人会发生水、电解质和酸碱平衡失调,下列不会出现的是
泌尿道感染患儿,取清晨首次中段尿离心后镜检以下结果哪项正确:
下列人员中有选举权的是哪项?()
工程项目范围定义的主要依据是()。
根据《中华人民共和国城市房地产管理法》的规定,下列关于该法的基本规定表述中不正确的是()
下列关于财务管理“引导原则”的说法中,错误的是()。
Mostofus,ifweknowevenalittleaboutwhereourfoodcomesfrom,understandthateverybiteputintoourmouthswas______al
ASP是(1)网页制作技术。A.动态B.静态以下文件中(3)属于动态网页文件。A.index.htmB.index.aspC.index.htmlD.index.exe
常用的虚拟存储系统由( )两级存储器组成,其中辅存是大容量的磁表面存储器。
若已把一个命令按钮的Default属性设置为True,则下面可导致按钮的Click事件过程被调用的操作是
最新回复
(
0
)